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CHAPTER 39 - Quantization

EXAMPLE 39.10 Emission and absorption

An atom has stationary states E, = 0.00eV, E, = 3.00eV, and
Ey = 5.00 eV. What wavelengths are observed in the absorption
spectrum and in the emission spectrum of this atom?

soLve This atom will absorb photons on the 1 =2 and 1 — 3
transitions, with AE;_., = 3.00 eV and AE,_,; = 5.00 eV. From
f=AE,./h and A = ¢/f, we find that the wavelengths in the
absorption spectrum are

MODEL Photons are emitted when an atom undergoes a quantum 1-2  f=300eV/h=1725X 10“Hz
jump from a higher energy level to a lower energy level. Photons

are absorbed in a quantum jump from a lower energy level to a A =414 nm (blue)

higher energy level. But most of the atoms are in the n = | ground =3  f=500eV/h=121X 10" Hz

state, so the only quantum jumps seen in the absorption spectrum
start from the n = 1 state.

VISUALIZE FIGURE 39.19 shows an energy-level diagram for the
atom.

A = 248 nm (ultraviolet)

The emission spectrum will also have the 414 nm and 248 nm
wavelengths due to the 2 — 1 and 3 — 1 quantum jumps from
excited states 2 and 3 to the ground state. In addition, the

FIGURE 39.19 Th g -level diagram. % ) ; : .
e it 13 . emission spectrum will contain the 3 — 2 quantum jump with

N 5.00eV AE;.,; = —2.00 ¢V that is not seen in absorption because there
are too few atoms in the n = 2 state to absorb. We found in
s ) 3.00 eV Example 39.9 that a 2.00 eV transition corresponds to a wave-
" ; length of 621 nm. Thus the emission wavelengths are
2 =31 A = 414 nm (blue)
n=1— X000V 3—1 A= 248 nm (ultraviolet)
Absorpti'on transitions Bmission transitions 352 A = 621 nm (orange)

can start and end
anywhere.

must start fromn = 1.

B |

STOP TO THINK 3 photon with a wavelength ,, _ 5 6.00 eV
of 414 nm has energy Ey0n =3.00 V. Do you ,.j 500eV
expect to see a spectral line with A = 414 nm in
the emission spectrum of the atom represented by
this energy-level diagram? If so, what transition : P
= i 5k n-= 2.

or transitions will emit it? Do you expect to see a .
spectral line with A = 414 nm in the absorption

n=0 0.00 eV

spectrum? If so, what transition or transitions will
absorb it?

39.6 The Bohr Hydrogen Atom

Bohr’s hypothesis was a bold new idea, yet there was still one enormous stumbling
block: What are the stationary states of an atom? Everything in Bohr’s model hinges
on the existence of these stationary states, of there being only certain electron orbits
that are allowed. But nothing in classical physics provides any basis for such orbits.
And Bohr’s model describes only the consequences of having stationary states, not
how to find them. If such states really exist, we will have to go beyond classical
physics to find them.

To address this problem, Bohr did an explicit analysis of the hydrogen atom. The
hydrogen atom, with only a single electron, was known to be the simplest atom. Fur-
thermore, as we discussed in Chapters 25 and 38, Balmer had discovered a fairly sim-
ple formula that characterized the wavelengths in the hydrogen emission spectrum,
Anyone with a successful model of an atom was going to have to derive Balmer’s for-
mula for the hydrogen atom.



Bohr’s paper followed a rather circuitous line of reasoning. That is not surprising
because he had little to go on at the time. But our goal is a clear explanation of the
ideas, not a historical study of Bohr’s methods, so we are going to follow a different
analysis using de Broglie’s matter waves. De Broglie did not propose matter waves
until 1924, 11 years after Bohr’s paper, but with the clarity of hindsight we can see
that treating the electron as a wave provides a more straightforward analysis of the
hydrogen atom. Although our route will be different from Bohr’s, we will arrive at
the same point, and, in addition, we will be in a much better position to understand the
work that came after Bohr.

NOTE » Bohr’s analysis of the hydrogen atom is sometimes called the Bohr atom.
It’s important not to confuse this analysis, which applies only to hydrogen, with the
more general postulates of the Bohr model of the atom. Those postulates, which we
looked at in Section 39.5, apply to any atom. To make the distinction clear, we’ll
call Bohr’s analysis of hydrogen the Bohr hvdrogen atom. <

The Stationary States of the Hydrogen Atom

FIGURE 39.20 shows a Rutherford hydrogen atom, with a single electron orbiting a
nucleus that consists of a single proton. We will assume a circular orbit of radius » and
speed v. We will also assume, to keep the analysis manageable, that the proton remains
stationary while the electron revolves around it. This is a reasonable assumption
because the proton is roughly 1800 times as massive as the electron. With these
assumptions, the atom’s energy is the kinetic energy of the electron plus the potential
energy of the electron-proton interaction. This is
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(39.18)

where we used g = —e and g, = +e.
NOTE » m is the mass of the electron, not the mass of the entire atom. <«

Now, the clectron, as we are coming to understand it, has both particle-like and
wave-like properties. First, let us treat the electron as a charged particle. The proton
exerts a Coulomb electric force on the electron:

2

e
elec = |7 —, toward center (39.19)
dme, r
This force gives the electron an acceleration a,,, = ;,m/m that also points to the

center. This is a centripetal acceleration, causing the particle to move in its circular
orbit. The centripetal acceleration of a particle moving in a circle of radius r at speed v
must be v*/r, thus

i &t v?
e = 5 = ——— = — (39.20)
n dmeymr- r
Rearranging, we find
; e’
i e (39.21)
dmegmr

Equation 39.21 is a constraint on the motion. The speed v and radius r must obey
Equation 39.21 if the electron is to move in a circular orbit. This constraint is not
unique to atoms. We earlier found a similar relationship between v and  for orbiting
satellites.

Now let’s treat the electron as a de Broglie wave. In Section 39.4 we found that a
particle confined to a one-dimensional box sets up a standing wave as it reflects back
and forth. A standing wave, you will recall, consists of two traveling waves moving in
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FIGURE 39.20 A Rutherford hydrogen
atom. The size of the nucleus is greatly
exaggerated.
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FIGURE 39.21 An n = 10 electron opposite directions. When the round-trip distance in the box is equal to an integer
standing wave around the orbit's number of wavelengths (2L = nA), the two oppositely traveling waves interfere con-
circumference. structively to set up the standing wave.

Electron standing wave Suppose that, instead of traveling back and forth along a line, our wave-like parti-

cle travels around the circumference of a circle. The particle will set up a standing
wave, just like the particle in the box, if there are waves traveling in both directions
and if the round-trip distance is an integer number of wavelengths. This is the idea we
want to carry over from the particle in a box. As an example, FIGURE 39.21 shows a
standing wave around a circle with n = 10 wavelengths.

The mathematical condition for a circular standing wave is found by replacing the
round-trip distance 2L in a box with the round-trip distance 27rr on a circle. Thus a cir-
cular standing wave will occur when

27r = nA MR DL 30 (39.22)

But the de Broglie wavelength for a particle has to be A = h/p = h/mv. Thus the
standing-wave condition for a de Broglie wave is

2mr=n
mv

This condition is true only if the electron’s speed is

nh

V, = =l 25 v (39.23)
2mmr
The quantity //27 occurs so often in quantum physics that it is customary (o give it
a special name. We define the quantity %, pronounced “h bar,” as

h = 1.055 X 107*Js = 6.58 X 107'%eVs

27
With this definition, we can write Equation 39.23 as

f
bkl IV L W) (39.24)
mr

I".if
This, like Equation 39.21, is another relationship between v and r This is the con-
straint that arises from treating the electron as a wave,

Now if the electron can act as both a particle and a wave, then both the
Equation 39.21 and Equation 39.24 constraints have to be obeyed. That is, v as given
by the Equation 39.21 particle constraint has to equal v? of the Equation 39.24 wave
constraint. Equating these gives

2 e’ ¥ n’t’

= ——

o, = —
dmegmr m-re

We can solve this equation to find that the radius r is

3 dre i’

r,=n TEE v s RO (39.25)

me*
where we have added a subscript n to the radius » to indicate that it depends on the

integer .
The right-hand side of Equation 39.25, except for the n”, is just a collection of con-

stants. Let's group them all together and define the Bohr radius aj, as

) 47reh’ o
ay = Bohr radius = s— = 5.29 X 10" m = 0.0529 nm
me-




With this definition, Equation 39.25 for the radius of the electron’s orbit becomes
erainions som mule LB v (39.26)

The first few allowed values of r, are

0.053nm n =1
0212om n=2
5
s 0476 nm n =3

We have discovered stationary states! That is, a hydrogen atom can exist only if
the radius of the electron’s orbit is one of the values given by Equation 39.26.
Intermediate values of the radius, such as r = 0.100 nm, cannot exist because the
electron cannot set up a standing wave around the circumference. The possible orbits
are quantized, with only certain orbits allowed.

The key step leading to Equation 39.26 was the requirement that the electron have
wave-like properties in addition to particle-like properties. This requirement leads to
quantized orbits, or what Bohr called stationary states. The integer n is thus the
quantum number that numbers the various stationary states.

Hydrogen Atom Energy Levels

Now we can make progress quickly. Knowing the possible radii, we can return to
Equation 39.23 and find the possible electron speeds to be

h 10k
Vi z =_._._......._—_.E n=192|3!"' {3927}
mr, n Mg n

where v, = fifmay = 2.19 X 10° m/s is the electron’s speed in the n = 1 orbit. The
speed decreases as n increases.

Finally, we can determine the energies of the stationary states. From Equa-
tion 39.18 for the energy, with Equations 39.26 and 39.27 for r and v. we have

| B e’ 1 W’ e’
En = _’”\Fﬂ"' T FR ] 7 2 2] 7 (3928)
2 dmwegr, 2 \magn® dmegn-ay
As a homework problem, you can show that this rather messy expression simplifies to
1 bisidl
= — 39.29)
n (47T€|, Z(JH) :
Let’s define
e ol v
= — = 14, e
l 47760 20]5 ;

We can then write the energy levels of the stationary states of the hydrogen atom as

E 13.60 eV
Bt audSONEE g o egdastor (39.30)
n n

This has been a lot of math, so we need to see where we are and what we have
learned. Table 39.2 on the next page shows values of r,, v,, and E, evaluated for quan-
tum number values n = 1 to 5. We do indeed seem to have discovered stationary
states of the hydrogen atom. Each state, characterized by its quantum number n, has a
unique radius, speed, and energy. These are displayed graphically in FIGURE 39.22, on
the next page. in which the orbits are drawn to scale. Notice how the atom’s diameter
increases very rapidly as n increases. At the same time, the electron’s speed decreases.
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FIGURE 39.22 The first four stationary states, or allowed

orbits, of the Bohr hydrogen atom drawn to scale.

= 16a,
"'4 1J—l'l"1XIO"m!~.

/ E,=-08eV
‘

— (]”“

Ratle) —Il?x 10° m/s

= —15eV
_ = 4a,
\': 1.1 X 10° m/s
E,=-34eV
r =ay
Sv, =22 X 10°mfs
E, = —13.6eV

EXAMPLE 39.11 Stationary states of the hydrogen atom
Can an electron in a hydrogen atom have a speed of 3.60 X
10° m/s? If so, what are its energy and the radius of its orbit? What
about a speed of 3.65 X 10° m/s?

soLve To be in a stationary state, the electron must have speed

v _ 2.19 X 10°m/s
n n

where n is an integer. A speed of 3.60 X 10° m/s would require
quantum number

2.19 X 10° m/s

= = 6.08
3.60 X 10° m/s

TABLE 39.2 Radii, speeds, and energies for the first five
states of the Bohr hydrogen atom

n r, (nm) v, (m/s) E, (V)
1 0.053 2.19 x 10° 13.60
2 0212 1.09 % 10° -340
3 0.476 0.73 X 10° — L5}
4 0.846 0.55 x 10° ~0.85
5 I:322 0.44 x 10° ~0.54

This is not an integer, so the electron can not have this speed. But
if v = 3.65 X 10° m/s, then

_219x 10°m/s
3.65 X 10° m/s

This is the speed of an electron in the n = 6 excited state. An elec-
tron in this state has energy

and the radius of its orbit is

re = 6%(5.29 X 107" nm) = 1.90 X 10™*m = 1.90 nm

Binding Energy and lonization Energy

It is important to understand why the energies of the stationary states are negative.
Because the potential energy of two charged particles is U = ¢,q./47e,r, the zero of
potential energy occurs at r = % where the particles are infinitely far apart. The state
of zero total energy corresponds to having the electron at rest (K = 0) and infinitely
far from the proton (U = 0). This situation, which is the case of two “free particles,”
occurs in the limit n — %, for which », = = and v, — (.

An electron and a proton bound into an atom have /ess energy than two free parti-
cles. We know this because we would have to do work (i.e., add energy) to pull the
electron and proton apart. If the bound atom has less energy than two free particles,
and if the total energy of two free particles is zero, then it must be the case that the
atom has a negative amount of energy.

Thus |E,| is the binding energy of the electron in stationary state n. In the ground
state, where £, = —13.60 eV, we would have to add 13.60 eV to the electron to free it
from the proton and reach the zero energy state of two free particles. We can say that
the electron in the ground state is “bound by 13.60 eV.” An electron in an n = 3 orbit,
where it is farther from the proton and moving more slowly, is bound by only 1.5] eV,
That is the amount of energy you would have to supply to remove the electron from an
n = 3 orbit. :

Removing the electron entirely leaves behind a positive ion, H' in the case of a
hydrogen atom. (The fact that H" happens to be a proton does not alter the fact that it
is also an atomic ion.) Because nearly all atoms are in their ground state, the binding
energy |E,| of the ground state is called the ionization energy of an atom. Bohr's




analysis predicts that the ionization energy of hydrogen is 13.60 eV. FIGURE 39.23 illus-
trates the ideas of binding energy and ionization energy.

We can test this prediction by shooting a beam of ¢lectrons at hydrogen atoms. A
projectile electron can knock out an atomic electron if its kinetic energy K is greater
than the atom’s ionization energy. leaving an ion behind. But a projectile electron will
be unable to cause ionization if its kinetic energy is less than the atom’s ionization
energy. This is a fairly straightforward experiment to carry out, and the evidence
shows that the ionization energy of hydrogen is, indeed, 13.60 eV.

Quantization of Angular Momentum

The angular momentum of a particle in circular motion, whether it is a planet or an
electron, is

L = mvr

You will recall that angular momentum is conserved in orbital motion because a force
directed toward a central point exerts no torque on the particle. Bohr used conserva-
tion of energy explicitly in his analysis of the hydrogen atom, but what role does con-
servation of angular momentum play?

The condition that a de Broglie wave for the electron set up a standing wave around
the circumference was given, in Equation 39.22, as

h
2mr=nA=n
my
We can rewrite this equation as
h
mvr = n_— = nh (39.31)

But mvr is the angular momentum L for a particle in a circular orbit. It appears that
the angular momentum of an orbiting electron cannot have just any value. Instead. it
must satisfy

L = nh n= 1208 0 (39.32)

Thus angular momentum also is quantized! The electron’s angular momentum must
be an integer multiple of Planck’s constant #.

The quantization of angular momentum is a direct consequence of this wave-like
nature of the electron. We will find that the quantization of angular momentum plays a
major role in the behavior of more complex atoms, leading to the idea of electron
shells that you likely have studied in chemistry.

STOPTOTHINK 395 Wha is the quantum number of this hydrogen atom?
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FIGURE 39.23 Binding energy and
ionization energy.

The binding energy is the energy
needed to remove an electron from
its orbit

The ionization energy is the energy
needed to create an ion by removing
a ground-state electron.
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