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An example of atomic engineering.
Thirty-five xenon atoms have been
manipulated into position with

the probe tip of a scanning
tunneling microscope.

» Looking Ahead

The goal of Chapter 41 is to
understand and apply the essential
ideas of quantum mechanics. In this
chapter you will learn to:

Use a strategy for finding and
interpreting wave functions.
Draw wave functions with
appropriate shapes.

Use potential-energy functions to
make quantum-mechanical
models.

Understand and use several
important quantum-mechanical
models.

Calculate the probability of
quantum-mechanical tunneling.

< Looking Back

Quantum mechanics will be
developed around two fundamental
ideas: energy diagrams and wave
functions. A review of energy
diagrams in Chapter 10 is especially
important. Please review:

Section 10.7 Energy diagrams.
Sections 39.4 and 39.5 Matter
waves and the Bohr model of
quantization.

Sections 40.3 and 40.4 Wave
functions and normalization.
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Quantum mechanics is not just for physicists any more. It is now an essential tool in
the design of semiconductor devices such as diode lasers. Whole new classes of
devices, called guantum-well devices, have been designed and built to exploit the
quantization of energy levels. We will look at some examples in this chapter.

Also at the cutting edge of engineering science is the design and manufacture of
nanostructures—small machines or other devices only a few hundred nanometers in
size. Many scientists and engineers envision a day in the near future when nanostruc-
tures will be constructed literally atom by atom. Quantum effects will be important in
devices this small. This photograph—of a structure built by scientists at IBM's
research laboratory by moving xenon atoms around on a metal surface—shows an
early example of “atomic engineering.”

Our goal for this chapter is to introduce the essential ideas of quantum mechanics.
Although the real world is three-dimensional, we will limit our study of quantum
mechanics to one dimension. This will allow us to focus on the fundamental concepts
of quantum physics without becoming overwhelmed by mathematical complications.
We will discuss some of the aspects of finding and using wave functions, then look at
several applications of quantum mechanics. We’ll conclude this chapter with a look at
a phenomenon called quanrum-mechanical tunneling, one of the more startling
aspects of quantum physics.

41.1 Schriédinger’'s Equation: The Law of Psi

In the winter of 1925, just before Christmas, the Austrian physicist Erwin Schridinger
gathered together a few books and headed off to a villa in the Swiss Alps. He had
recently learned of de Broglie's 1924 suggestion that matter has wave-like properties,
and he wanted some time free from distractions to think about it. Before the trip was
over, Schrodinger had discovered the law of quantum mechanics.

Schrodinger’s goal was to predict the outcome of atomic experiments, a goal that
had eluded classical physics. The mathematical equation that he developed is now
called the Schrédinger equation. It is the law of quantum mechanics in the same way
that Newton's laws are the laws of classical mechanics. It would make sense to call it
Schrodinger’s law, but by tradition it is called simply the Schridinger equation.
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You learned in Chapter 40 that a matter particle is characterized in quantum
physics by its wave function s(x). If you know a particle’s wave function, you can
predict the probability of detecting it in some region of space. That’s all well and
good, but Chapter 40 didn't provide any method for determining wave functions, The
Schridinger equation is the missing piece of the puzzle. It is an equation for finding a
particle’s wave function s(x) along the x-axis.

Consider an atomic particle with mass m and mechanical energy E whose interac-
tions with the environment can be characterized by a one-dimensional potential-
energy function U(x). The Schrédinger equation for the particle’s wave function is

dZ
Z[f = _%E[E = Ux) Jp(x) (the Schrodinger equation)  (41.1)

This is a differential equation whose solution is the wave function Y(x) that we seek.
Our first goal is to learn what this equation means and how it is used. Erwin Schrédinger.

lustifying the Schrédinger Equation

The Schridinger equation can be neither derived nor proved. It is not an outgrowth of
any previous theory. Its success depended on its ability to explain the various phenom-
ena that had refused to yield to a classical-physics analysis and to make new predic-
tions that were subsequently verified.

Although the Schridinger equation cannot be derived, the reasoning behind it can
at least be made plausible. De Broglie had postulated a wave-like nature for matter in
which a particle of mass m, velocity v, and momentum p = my has a wavelength
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A
Schrodinger’s goal was to find a wave equation for which the solution would be a

wave function having the de Broglie wavelength.
An oscillatory wave-like function with wavelength A is

o e
W(x) = sin(“—j\i‘) 41.3)

where s, is the amplitude of the wave function. Suppose we take a second derivative
of r(x):
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We can use the definition of i (x), from Equation 41.3, to write the second derivative as

d*y (2m)?
S Y (41.4)
dx” A- v
Equation 41.4 relates the wavelength A to a combination of the wave function Yr(x)
and its second derivative.

NOTE » These manipulations are not specific to quantum mechanics. Equa-
tion 41.4, which is well known for classical waves. applies equally well to sound
waves and waves on a string. <

Schridinger’s insight was to identify A with the de Broglie wavelength of a particle.
We can write the de Broglie wavelength in terms of the particle’s kinetic energy K as

iofuups 2l Ti wadds ok
mv \/om Gmv?) \2mK

Notice that the de Broglie wavelength increases as the particle’s kinetic energy
decreases. This observation will play a key role.

(41.5)
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If we square this expression for A and substitute it into Equation 41.4, we find

dztp' (2m)2mK 2m
/ % - 2 4l
] _—k‘ Yr(x) Fe Kir(x) (41.6)

where & = h/27. Equation 41.6 is a differential equation for the function ¢/(x). The
solution to this equation is the sinusoidal wave function of Equation 41.3, where A is
the de Broglie wavelength for a particle with kinetic energy K.

Our derivation of Equation 41.6 assumed that the particle’s Kinetic energy X is con-
stant. The energy diagram of FIGURE 41.1a reminds you that a particle’s kinetic energy
remains constant as it moves along the x-axis only if its potential energy U is constant.
In this case, the de Broglie wavelength is the same at all positions.

FIGURE 41.1 The de Broglie wavelength changes as a particle’s kinetic energy changes.
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In contrast, FIGURE 41.1b shows the energy diagram for a particle whose kinetic
energy is not constant. This particle speeds up or slows down as it moves along the x-
axis, transforming potential energy to kinetic energy or vice versa. Consequently, its
de Broglie wavelength changes with position.

Suppose a particle’s potential energy—gravitational or electric or any other kind of
potential energy—is described by the function U(x) or U(y). That is, the potential
energy is a function of position along the axis of motion. For example. the gravita-
tional potential energy near the earth’s surface is the function U(y) = mgy.

If E is the particle’s total mechanical energy, its Kinetic energy at position x is

K=E—-U() 41.7)
If we use this expression for K in Equation 41.6, that equation becomes
dlu"f 2m
5 b — Uix) Wr(x)
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This is Equation 41.1, the Schridinger equation for the particle’s wave function ¢s(x).

NOTE » This has not been a derivation of the Schridinger equation. We've made a
plausibility argument, based on de Broglie’s hypothesis about matter waves, but
only experimental evidence will show if this equation has merit. «



41.1 - Schriodinger’s Equation: The Law of Psi 1265

@8 Three d(, Broghe waves are Qhown for partules ofcqua] mass.
Rank in order from fastest to slowest, the speeds of particles a, b, and c.
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Quantum-Mechanical Models

Long ago, in your study of Newtonian mechanics, you learned the importance of
models. To understand the motion of an object, we made simplifying assumptions: that
the object could be represented by a particle, that friction could be described in a sim-
ple way, that air resistance could be neglected, and so on. Models allowed us to under-
stand the primary features of an object’s motion without getting lost in the details.

The same holds true in quantum mechanics. The exact description of a microscopic
atom or a solid is extremely complicated. Our only hope for using quantum mechanics
effectively is to make a number of simplifying assumptions—that is, to make a
quantum-mechanical model of the situation. Much of this chapter will be about
building and using quantum-mechanical models.

The test of a model’s success is its agreement with experimental measurement.
Laboratory experiments cannot measure yr(x), and they rarely make direct measure-
ments of probabilities. Thus it will be important to tie our models to measurable quan-
tities such as wavelengths, charges, currents, times, and temperatures.

There’s one very important difference between models in classical mechanics and
quantum mechanics. Classical models are described in terms of forces, and Newton’s
laws are a connection between force and motion. The Schrodinger equation for the
wave function is written in terms of energies. Consequently, quantum-mechanical
modeling involves finding a potential-energy function U(x) that describes a particle’s
interactions with its environment,

FIGURE 41.2 reminds you how to interpret an energy diagram. We will use energy dia- v
grams extensively in this and the remaining chapters to portray quantum-mechanical ph",;‘;‘lé*s 201
models. A review of Section 10.7, where energy diagrams were introduced, is highly
recommended.

FIGURE 41.2 Interpreting an energy diagram.
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