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EXAMPLE 41.1 An electron in a box g 30’ e
An electron is confined to a rigid box. What is the length of the AE = 3, = Sd? 30eV =48X107"]
box if the energy difference between the first and second states is

3.0eV? The length of the box for which AE = 3.0 eV is

MODEL Model the electron as a particle in a rigid one-dimensional 2

box of length L. L= £y 6.14 X 107" m = 0.614 nm

SOLVE The first two quantum states, withn = | and n = 2. have
energies £, and E, = 4E,. Thus the energy difference between the  Assess The expression for £, is in SI units, so energies must be in
slates is I, noteV.

Solve IlI: Normalize the Wave Functions

We can determine the constant A by requiring the wave functions to be normalized.
The normalization condition, which we found in Chapter 40, is

-

] [(x)]%dx = 1

This is the mathematical statement that the particle must be somewhere on the x-axis.
The integration limits extend to ==, but here we need to integrate only from 0 to L
because the wave function is zero outside the box. Thus

- 3 nmx
J W, (x)[2dx = A,f[ 5in3(- - -)d.t =1 (41.24)

0 -0 L

or

L 5 -12
A, = U sin? 22~ dx] (41.25)
0 L

We placed a subscript n on A, because it is possible that the normalization constant is
different for each wave function in the family. This is a standard integral. We will
leave it as a homework problem for you to show that its value. for any n, is

= Al =13 (41.26)

We now have a complete solution to the problem. The normalized wave function for
the particle in quantum state n is

(2 nrx
fii s =r=<L
e B \’Lsm( I ) O=x=1I

(41.27
0 x<<0andx>L }

41.4 A Particle in a Rigid Box:
Interpreting the Solution

Our solution to the quantum-mechanical problem of a particle in a box tells us that:

1. The particle must have energy E, = n’E,, wheren = 1,2.3. .. .is the quantum
number. £, = h*/8mL? is the energy of the n = | ground state.
2. The wave function for a particle in quantum state 7 is

2.
Ualx) = {V "
0 x<Oandx> L

m) 0=x=<1L
L

These are the stationary states of the system.
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FIGURE 41.8 An alternative way to show

the potential-energy diagram, the
energies, and the wave functions.
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EXAMPLE 41.2 Energy levels and quantum jumps
A semiconductor device known as a guantum-well device is
designed to “trap” electrons in a 1.0-nm-wide region. Treat this as

a one-dimensional problem.

a. What are the energies of the first three quantum states?
b. What wavelengths of light can these electrons absorb?

MODEL Model an electron in a quantum-well device as a particle
confined in a rigid box of length L = 1.0 nm.

VISUALIZE FIGURE 41.9 shows the first three energy levels and the
transitions by which an electron in the ground state can absorb a

photon.

- One-Dimensional Quantum Mechanics

3. The probability density for finding the particle at position x inside the box is

Px) = |¢,(0)* = —91n2("m) (41.28)

FIGURE 41.7 Wave functions and probability densities for a particle in a rigid box of length L.
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A graphical presentation will make these results more meaningful. FIGURE 417
shows the wave functions ¢(x) and the probability densities P(x) = |¢(x)|* for
quantum states n = | to 3. Notice that the wave functions go to zero at the boundaries
and thus are continuous with ¢ = 0 outside the box.

The wave functions (x) for a particle in a rigid box are analogous to standing
waves on a string that is tied at both ends. You can see that s, (x) has (n — 1) nodes
(zeros), excluding the ends, and n antinodes (maxima and minima). This is a gen-
eral result for any wave function, not just for a particle in a rigid box.

FIGURE 41.8 shows another way in which energies and wave functions are shown
graphically in quantum mechanics. First, the graph shows the potential-energy func-
tion U(x) of the particle. Second, the allowed energies are shown as horizontal lines
(total energy lines) across the potential-energy graph. These are labeled with the quan-
tum number n and the energy E,. Third—and this is a bit tricky—the wave function
for each n is drawn as if the energy line were the zero of the y-axis. That is, the graph
of r,(x) is drawn on top of the E, energy line. This allows energies and wave func-
tions to be displayed simultaneously, but it does nor imply that ¢, is in any sense
“above” ¢|. Both oscillate sinusoidally about zero, as Figure 41.7 shows.

n=

FIGURE 41.9 Energy levels and quantum jumps
for an electron in a quantum-well device.
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SOLVE a. The particle’s mass is m =m, =9.11 X 10 *'kg. The
allowed energies, in both J and eV, are

dee, b

8mlL?
E, = 4E, = 1.508 eV
E; =9E, = 3393eV

E, =6.03 X 107°] = 0.377eV

b. An electron spends most of its time in the n = 1 ground state.
According to Bohr’s model of stationary states, the electron can
absorb a photon of light and undergo a transition, or quantum
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Aoy = = 1098 nm

E, — E

he
E; - E;

Aoz = =411 nm

ASSESS In practice, various complications usually make the
I — 3 transition unobservable. But quantum-well devices do
indeed exhibit strong absorption and emission at the A,_., wave-
length. In this example, which is typical of quantum-well devices,
the wavelength is in the near-infrared portion of the spectrum.
Devices such as these are used to construct the semiconductor

jump, ton = 2 or n = 3 if the light has frequency f = AE/h.
The wavelengths. given by A = ¢/f = he/AE, are

NOTE » The wavelengths of light emitted or absorbed by a quantum system are
determined by the difference between two allowed energies. Quantum jumps
involve two stationary states. <

Zero-Point Motion

The lowest energy state in Example 41.2, the ground state, has E; =0.38 eV. There is
no stationary state having E = 0. Unlike a classical particle, a quantum particle in a
box cannot be at rest! No matter how much its energy is reduced, such as by cooling
it toward absolute zero, it cannot have energy less than E,.

The particle motion associated with energy E|, called the zero-point motion, is a
consequence of Heisenberg's uncertainty principle. Because the particle is somewhere
in the box, its position uncertainty is Ax = L. If the particle were at rest in the box, we
would know that its velocity and momentum are exactly zero with no uncertainty:
Ap, = 0. But then AxAp, = 0 would violate the Heisenberg uncertainty principle.
One of the conclusions that follows from the uncertainty principle is that a confined
particle cannot be at rest.

Although the particle’s position and velocity are uncertain, the particle’s energy in
each state can be calculated with a high degree of precision. This distinction between a
precise energy and uncertain position and velocity seems strange, but it is just our old
friend the standing wave. In order to have a stationary state at all, the de Broglie
waves have to form standing waves. Only for very precise frequencies, and thus pre-
cise energies, can the standing-wave pattern appear.

exampLE 41.3 Nuclear energies h?
Protons and neutrons are tightly bound within the nucleus of an Ey.m 8mlL?
atom. If we use a one-dimensional model of a nucleus, what are
the first three energy levels of a neutron in a 10-fm-diameter
nucleus (1 fm = 107 % m)?

MODEL Model the nucleus as a one-dimensional box of length
L = 10 fm. The neutron is confined within the box.

SOLVE The energy levels, with L = 10 fmand m = m, = 1.67 X
10" kg, are

gies of a few million eV.

E, = 4E, = 8.24 MeV
E; = 9E, = 18.54 MeV

lasers used in CD players and laser printers.

=320 X% 10 ) = 2.06 MeV

AsSESS An electron confined in an atom-size space has energies
of a few eV. A neutron confined in a nucleus-size space has ener-
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exampLE 41.4 The probabilities of locating the particle  b. For a small width 8x, the probability of finding the particle in

A particle in a rigid box of length L is in its ground state. dx at position x is

a. Where is the particle most likely to be found? 2 iy

b. What are the probabilities of finding the particle in an interval Prob(in éx at x) = Pj(x)éx = [y, (x)|*8x = L Siﬂz(*i')ﬁl
of width 0.01L at x = 0.00L, 0.25L, and 0.50L?

¢. What is the probability of finding the particle in the center half The interval 8x = 0.01L is sufficiently small for this 1o be

of the box? valid. The probabilities of finding the particle are
MODEL The wave functions for a particle in a rigid box have been Prob(in 0.01Z at x = 0.00L) = 0.000 = 0.0%
determined.

B . Prob(in 0.01L at x = 0.25L) = 0.010 = 1.0%
VISUALIZE FIGURE 41.10 shows the probability density P,(x) =
[, (x)|? in the ground state. Prob(in 0.01L at x = 0.50L) = 0.020 = 2.0%

c. The center half of the box stretches from x = L/4tox = 3L/4.
The probability that the particle is in this interval is the area
under the probability-density curve:

FIGURE 41.10 Probability density for a
particle in the ground state.
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The probability of being in the
center half of the box is the area oot 1 i l = 0.818
under the curve from L/4 1o 3L/4. 2w ;

SOLVE a. The particle is most likely to be found at the point where ~ ASSESS If a particle in a box is in the n = 1 ground state, there is
the probability density P(x) is a maximum. You can see from an 81.8% chance of finding it in the center half of the box. The
Figure 41.10 that the point of maximum probability forn = 1  probability is greater than 50% because, as you can see in Fig-
isx = L/2. ure 41.10, the probability density P, (x) is larger near the center of

the box than near the boundaries.

This has been a lengthy presentation of the particle-in-a-box problem. However, it
was important that we explore the method of solution completely. Future examples
will now go more quickly because many of the issues discussed here will not need to
be repeated.

STOPTOTHINK#1.2 © A particle in a rigid box in the n = 2 stationary state is most likely
to be found

a. In the center of the box.

b. One-third of the way from either end.

¢. One-quarter of the way from either end.

d. Itis equally likely to be found at any point in the box.

41.5 The Correspondence Principle

Suppose we confine an electron in a microscopic box, then allow the box to get bigger
and bigger. What started out as a quantum-mechanical situation should, when the box
becomes macroscopic, eventually look like a classical-physics situation. Similarly, a
classical situation such as two charged particles revolving about each other should
begin to exhibit quantum behavior as the orbit size becomes smaller and smaller.
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