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The purpose of this note is to calculate the effect of the spring mass on
the oscillation frequency of an object hanging at the end of a spring. The goal
is to find the limitations to a frequently-quoted rule that 1/3 the mass of the
spring should be added to to the mass of the hanging object. This calculation
was prompted by a student laboratory exercise in which it is normally seen
that the frequency is somewhat lower than this rule would predict.

Consider a mass M hanging from a spring of unstretched length l, spring
constant k, and mass m. If the mass of the spring is neglected, the oscillation

frequency would be ω =
√

k/M . The quoted rule suggests that the effect of

the spring mass would be to replace M by M + m/3 in the equation for ω.
This result can be found in some introductory physics textbooks, including,
for example, Sears, Zemansky and Young, University Physics, 5th edition, sec.
11-5. The derivation assumes that all points along the spring are displaced
linearly from their equilibrium position as the spring oscillates. This note will
examine more general cases for the masses, including the limit M = 0. An
appendix notes how the linear oscillation assumption breaks down when the
spring mass becomes large.

Let the positions along the unstretched spring be labeled by x, running
from 0 to L, with 0 at the top of the spring, and L at the bottom, where the
mass M is hanging. When the spring is stretched, label the corresponding
positions by a function y(x). The motion of the spring will be described by
the time variation of y. The length of the stretched spring will be denoted
Y = y(L). The top of the spring is fixed, at y(0) = 0. It will be assumed that
the spring oscillations are not so large that they cause the spring coils to bump
into each other, so the motion is just determined by the elastic extension and
compression of the spring.

We begin with the derivation of the wave equation for the spring, which is
a well-known result, and then incorporate the boundary condition describing
the motion of the hanging mass.
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Consider a tiny element dx of the spring, which stretches to a length dy.
Scaling the spring constant down from the whole spring to just the element
dx gives the spring constant for just the length dx to be kL/dx. (The spring
constant of a spring is inversely proportional to its length.) The change in
length of this element is dy − dx. Therefore the tension on this element is

T (x) =
kL

dx
(dy − dx) = kL

(

dy

dx
− 1

)

. (1)

Note that if the stretching were linear, then dy/dx = Y/L + 1, so that the
tension T (x) would reduce to k(Y − L), as expected.

The element dx has mass mdx/L, and is acted on by its weight, plus the
difference in tension on the two ends, giving a total force

dF (x) =
mg

L
dx + (T (x + dx) − T (x)) . (2)

The acceleration is ÿ, so Newton’s law for the element may be written using
(1) as

dF (x) =
mg

L
dx + kL

d

dx

(

dy

dx
− 1

)

dx =
(

m

L
dx
)

ÿ. (3)

This may be written as

ÿ − kL2

m
y′′ = g. (4)

Equation (4) applies to any point on the spring except x = L, where the
additional mass M is hanging. There, the force is

F (L) = Mg − T (L) = Mg − kL(y′(L) − 1). (5)

Newton’s Law at this point gives the boundary condition for Y = y(L),

MŸ = F (L) = Mg − kL(y′(L) − 1). (6)

The general motion of the spring is obtained by solving (4) with boundary
condition (6) at x = L and boundary condition y(0) = 0 at the stationary point
x = 0. It is convenient to subtract the static equilibrium solution y0(x), and
work instead with the displacement u(x, t) = y(x, t)− y0(x) from equilibrium.
The static solution is readily found to be

y0(x) = x
[

1 +
g

kL
(M + m)

]

− mgx2

2kL2
. (7)

Then the equation of motion (4) becomes

ü − kL2

m
u′′ = 0, (8)
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and the boundary conditions (6) imply

u(0, t) = 0, ü(L) +
kL

M
u′(L) = 0 (9)

Equation (8) is recognized as the wave equation for the spring, describing

longitudinal waves with velocity vs = L
√

k/m. An equivalent but simpler

expression for the boundary conditions (9) can be obtained using the spring
equation of motion (8), which gives

u(0, t) = 0, u′′(L, t) +
m

ML
u′(L, t) = 0. (10)

We will consider the special case where the entire spring vibrates in phase
at a common frequency ω, so that the motion can be expressed as

u(x, t) = u(x) cos(ωt) (11)

with ω to be determined. The equation of motion then reduces to

u′′(x) = −mω2

kL2
u(x) = −

(

ω

vs

)2

u(x) (12)

with boundary conditions

u(0) = 0, u′(L) =
Mω2

kL
u(L). (13)

The solution to (12) with u(0) = 0 must take the form

u(x) = D sin(αx), (14)

with amplitude D and α = (m/k)1/2ω/L = ω/vs. Substituting this solution
into (13) gives, at x = L,

tan(αL) =
αkL

Mω2
=

ρ

αL
(15)

where ρ = m/M is the ratio of the spring mass to the hanging mass. If

ω0 =
√

k/M is the angular frequency when the spring is massless, (15) can
also be expressed as

tan
(√

ρ
ω

ω0

)

=
√

ρ
ω0

ω
. (16)

The solutions in the limit ρ = 0 have a somewhat different form, since α = 0
in that case. When ρ = 0, the displacement is simply linear: u(x) = Dx/L,
and ω = ω0. In the opposite limit, ρ → ∞, we can set M = 0 in the original
equations and find cos(αL) = 0, which implies ω = nπvs/2 for any odd n. In
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this case, there is no hanging mass, and the solutions are longitudinal waves on
the spring with a fixed boundary on one end and free boundary on the other.
The fundamental angular frequency is ω = πvs/2L, as usual for longitudinal
waves with these boundary conditions.

For intermediate values of ρ, there will be infinitely many solutions of the
form un(x) = A sin(αnx). The equations of motion are linear, so the general
motion will be a linear combination of modes, with the higher oscillations
becoming more important as the ratio ρ becomes larger. See the appendix
for a more complete discussion of the motion of the spring. In the remainder
of this note, we will take the oscillation frequency of the spring to be the
fundamental frequency, the one which has a smooth limit to ω0 when the mass
of the spring goes to zero.

To solve (16) we can use the fact that

z

tan(z)
= 1 − z2

3
− δ(z2) (17)

where the function δ(z) can be expanded in terms of Bernoulli numbers,

δ(z) =
∞
∑

k=2

22k|B2k|
(2k)!

zk =
z2

45
+

2z3

945
+

z4

4725
+ . . . (18)

or in terms of the Riemann zeta function,

δ(z) =
2z2

π4

∞
∑

k=0

ζ(2k + 4)
(

z

π2

)k

. (19)

Equation (16) may then be rewritten as

ω2

ω2
0

=
1 − δ(ρω2/ω2

0
)

1 + ρ/3
(20)

It is convenient to express the solution ω in terms of an effective mass
M ′ = M + cm where c is a fraction of the spring mass which must be added

to the hanging mass to obtain the correct oscillation frequency, ω =
√

k/M ′.

The expression (20) may be rewritten in terms of the fraction c as

ω2

ω2
0

=

(

k

M + cm

)

(

M

k

)

=
M

M + cm
=

1

1 + cρ
. (21)

Then the fraction of the spring mass which must be added to the hanging mass
is

c =
1

1 − δ

(

1

3
+

δ

ρ

)

with δ = δ

(

ρ

1 + cρ

)

. (22)
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The general dependence of c on the mass ratio ρ is shown in Figure 1. For small
ρ, the δ term can be dropped in (22), giving c = 1/3. This is the result derived
in text books, including Sears, Zemansky and Young, University Physics, 5th
ed., by much simpler means. Corrections can be obtained iteratively, beginning
with c = 1/3 when evaluating δ on the right-hand side of (22), and then
calculating improved values until the result converges.

In the opposite limit, when the hanging mass is removed entirely, and
ρ → ∞, c approaches a limiting value of 4/π2 ≈ 0.405. (This limit corresponds
to z = c−1/2 = π/2 in (17).) This is consistent with the result obtained
by setting M = 0 from the beginning and using the fundamental frequency
ω = πvs/2 found earlier, which implies

ω(ρ → ∞) =
π

2

√

k

m
=

√

k

M + cm
(23)

with M = 0 and c = 4/π2.
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Figure 1: Dependence of the Effective Mass Parameter on the Ratio of Masses
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Appendix: Motion of the Spring

When ρ > 0, it is possible to form an orthonormal set of functions describing

the oscillations of the mass on the spring. Let un(x) =
√

2/L sin(αnx), where

αn = ωn/vs is the nth solution to equation (15). The boundary condition (13)
can be used to show that the functions un(x) are orthonormal with respect
to an inner-product (u|v) =

∫ L
0

u(x)v(x)dx + Lu(L)v(L)/ρ, so that (um|un) =
δmn. A general solution can be constructed by adding a linear combination of
the un to match the initial conditions. Suppose the hanging mass is simply
pulled down a distance D from the equilibrium position and then released.
When the spring is pulled down by applying a force F = kD, the position
y(x) of the spring is given by

y(x, 0) = x
[

1 +
g

kL
(M + m) +

F

kL

]

− mgx2

2kL2
= y0(x) + u(x) (24)

with equilibrium position y0(x) given by (7) and a linear displacement function
u(x) = Fx/kL = xD/L. The displacement function u can be expanded as
u(x) =

∑

n bnun(x) with coefficients

bn = (u|un) =
D

L

un(L)

α2
n

=
D

L

v2

s

ω2
n

√

2

L
sin(αnL). (25)

The time-dependent displacement function is then

u(x, t) =
2D

L2

∞
∑

n=1

1

α2
n

sin(αnL) sin(αnx) cos(ωnt). (26)

When ρ is small, only b1 is significant and u(x, t) ≈ (Dx/L) cos ω1t, but for
larger ρ, the higher oscillation modes are excited. This is consistent with in-
creasingly complicated composite motions seen in the laboratory when the
hanging mass is reduced compared to the spring mass. The approximate
treatment which finds c = 1/3 regardless of ρ assumes that the linear form
u(x) = Dx/L holds at all times, not just the initial instant. In fact, this is
only true if ρ → 0. In the opposite limit, where the hanging mass is absent,

αn = nπ/2L with n odd, and bn = (4DL/π2n2)
√

2/L, which shows that the
higher modes contribute significantly to the motion:

u(x, t) =
8D

π2

∑

n odd

1

n2
sin

(

nπx

2L

)

cos
(

nπvst

2L

)

. (27)
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