
Spacetime Diagrams

1 Getting Started

Now that we have the Lorentz transformations, we can convert an event’s spacetime
coordinates (x , y , z, t) in one frame to the same event’s coordinates in another inertial
reference frame, (x ′, y ′, z ′, t ′). The equations are straight-forward but somewhat abstract.
The spacetime diagram is a tool to help us visualize Lorentz transformations and multiple
events in different reference frames.

2 One Reference Frame

Figure 1: Traditional view of
x–position vs. time of object mov-
ing at the speed of light.

In PHYS211, we often visualized motion in one di-
mension by plotting the x coordinate on the ver-
tical axis and the t coordinate on the horizon-
tal axis. An object moving at the speed of
light would be represented by Figure 1. The
slope of such a graph is the velocity of the
object in the x–direction. For the speed of
light, that is 3.00 × 108 m/s. You can con-
firm that this is the slope by examining rise over
run.

In special relativity, we will flip that conven-
tion. We want to visualize time on the ver-
tical axis, and position on the horizontal axis.
If we simply flip the axes of Figure 1, we
get something like Figure 2. Now, the slope
of something moving at the speed of light is

1
3.00×108 m/s

. However, the speed of light is go-
ing to come up very often as we work in spe-
cial relativity. More importantly, all observers
agree on the speed of light. We will make
our lives much easier if we design our dia-
grams such that the speed of light has a slope
of 1, instead of dealing with more complicated
units.
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Figure 2: Flipped view, time vs. x–position of object moving at the speed of light.

2.1 “SR" Units

We have two options to simplify our units. The first option is to change how we plot
position. Instead of using meters, let’s use light-seconds. This is the distance that light
travels in one second. We could choose any pair of units that keeps the slope 1; for
example, minutes and light-minutes, years and light-years, etc. This is illustrated in the
left side of Figure 3. In class, this is the convention that we will use. You could also change
how you plot the time axis, instead. By multiplying by the speed of light, c, your time axis
could instead be written in meters. This is illustrated in the right side of Figure 3.

Figure 3: Two options for convenient units to make the speed of light equivalent to a slope
of 1. Note that these two graphs do not represent the same amount of time that has
passed. Which one represents a larger amount of time shown on the graph?
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In ordinary SI units, the speed of light c is equal to 299,792,458 m/s, or to 2 significant
figures, 3.00×108 m/s. As mentioned, this is an ungainly quantity. In the Systém Interna-
tional (SI) system, the units for mechanical quantities (such as velocity, momentum, force,
energy, angular momentum, and pressure) are based on the three fundamental units: the
meter, the second, and the kilogram. When drawing spacetime diagrams, however, we
will use a slightly modified version of SI units (let’s call it Systéme Relativistique, or SR,
units), where distance is measured in seconds (i.e. light seconds) instead of in meters
(with the other basic units being the same). Note that by defining both distance and time
in units of seconds, the quantity of velocity or speed becomes unitless.

The factors used to convert from SI distance units to SR distance units are based on the
fundamental definiton of the light-second: 3.00 × 108 m ≡ 1 s. For example, a distance
of 25 km can be converted to distance in light-seconds as follows:

25 km = 25 km× 1× 1 = 25 km× 1000 m
1 km

×
( 1 s

3.00× 108 m

)
(1)

= 8.3× 10–5 s = 83 µs (2)

This means that 25 km is equivalent to the distance that light travels in 83 millionths of a
second. For large distances, it may be more appropriate to measure distances in hours
or years instead. Can you show in your Reading Memo that a lightyear is equivalent to
9.5× 1015 meters?

2.2 Worldlines

Figure 4: A space-time diagram of
two planets (A and B) stationary to
one another, and a spaceship trav-
eling at 0.5c from A to B.

Imagine the following scenario: Planet A is at rest
at the origin (x = 0) of their inertial frame of ref-
erence. Planet B is also at rest relative to Planet
A, but at a distance 2 light-years away. In Fig-
ure 4, this is represented by two red lines la-
beled “A" and “B". These are the worldlines
of the respective planets. Their location remains
the same as time goes on. When we say “as
time goes on," we imply that we read the space-
time diagram from bottom (t=0) to top. Imag-
ine Planet A sends a spacecraft to Planet B at
a speed of one half the speed of light (0.5c).
The worldline of this spacecraft is represented
by the blue line. It is sloped, because its po-
sition changes with time. The slope on this
graph is 2. For every 2 years traveled (rise),
the spacecraft travels a distance of 1 light-year
(run).
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How long does the spacecraft take to get to Planet B? From the definition of velocity alone,
you can find t = d /(0.5c) = 2 light-years /(0.5 × 1light-year/year) = 4 light-years. Notice
that this is also the time coordinate where the blue worldline of the spaceship coincides
with the red worldline of Planet B in Figure 4. The coordinates are (x,t) = (2 light-years, 4
years). From now on, instead of saying "light-years", let’s just stick to SR units and simply
call this distance "years."

3 Two-Observer Spacetime Diagram

In the previous example, we only looked at one inertial reference frame, the one in which
Planets A and B are at rest. But what about the reference frame of the spaceship? We
know that at such a high speed, the spaceship experiences space and time differently
than the two planets do. The spaceship does not believe it takes 4 years to travel from
A to B. How can we represent that on one graph? The key is to recognize that in the
spaceship’s frame of reference, the spaceship is at rest, and so its worldline would
be parallel to the time axis in its frame of reference, t ′. Therefore, the blue line in
Figure 4 is in fact one of the axes for the spacetime diagram of the spaceship’s frame of
reference.

Before we continue, here are a few conventions we will follow:

• We will work with only those events that occur along the common x and x ′ axes of
the two frames. Assume y ′ = y = z ′ = z = 0 for all events under discussion.

• The spatial origins (x = x ′ = 0) of both frames coincide with t = t ′ = 0, which we will
call the Origin Event.

• We must pick one frame S to designate as the Home Frame. It is convention to pick
the Other Frame (S′) to be the frame of the two that moves in the +x direction with
respect to the Home Frame.

• We will represent the Home Frame t and x axes in the usual manner in a spacetime
diagram (i.e., we will draw its t axis as a vertical line and its x axis as a horizontal
line.

• Relativistic effects are not obvious at speeds much less than c, so represent all
velocities as β = v /c.

• All observers agree on the speed of light, so the speed of light should be a line with
slope=1 in both coordinate systems.

In our example, the origin event is when the spaceship left Planet A. The spaceship and
Planet A both coincided at the same location x = x ′ = 0 and they both declared that mo-
ment to be t = t ′ = 0.

4



We’ve already identified that the blue line in Figure 4 represents the t ′ axis. It connects
all events that occur at the spatial origin x = 0 of that frame (i.e. at the same place as
the origin event - in this case, the location of the spaceship in its own frame). It is a line
with a slope of 1/β. Where is the x ′ axis? This would be a line connecting all events that
occur at t = 0 in that frame (i.e., at the same time as the origin event). To “give away
the punchline," the x ′ axis will be a line of slope β. The diagram x’ axis makes the same
angle, θ, with the diagram x axis that the t’ axis makes with the t axis.. This is illustrated
in Figure 5. This assures that a beam of light will still have slope = 1 in the moving frame.
We will confirm this later.

3.1 Calibrating the axes

Figure 5: Spacetime diagram for
an Other Frame S’ moving at β =
0.5.

Where do we draw the tick marks for the t ′ axis - in
other words, how to we mark where t ′ = 1 year, 2
years, etc.?

One way to figure this out is to use the time dilation
equation.

∆t =
1√

1 – β2
∆t ′ (3)

The quantity 1√
1–β2

appears so often, it is given the

symbol γ (“gamma"). So, ∆t = γ∆t ′. This means
that t ′ = (0, 1, 2, 3...) when t = (γ × 0, γ × 1, γ × 2, γ ×
3...). In the case of this example, where β = 0.5,
γ ≈ 1.15.

Let’s think of this in terms of events. An event ap-
pears in one singular place on our graph. The spaceship’s location after 1.15 years have
passed on Planet A is represented by a gray star in Figure 6. This corresponds to 1 year
in the spaceship’s reference frame, so we can draw a tickmark and label it t ′ = 1 year.
Likewise, at every interval spaced every 1.15 years in the Home Frame t axis, we can
draw a line straight across to the t ′ axis and know that 1 more year has passed for the
spaceship in the Other Frame. These intervals are shown in dashed lines on Figure 6.

Let’s practice reading the graph. We’ll label the event when the spaceship reaches Planet
B with a blue star. This occurs at (x , t) = (2 light-years, 4 years). On the t ′ axis, however,
this corresponds to what looks like a little less than 3.5 years, just reading by eye. Let’s
check using the time dilation equation:

∆t ′ =
√

1 – β2∆t =
√

1 – 0.52(4 yr) = 3.46 yr (4)
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Figure 6: Dotted lines illustrate calibration of the t ′ and x ′ coordinate axes. Two events
are also shown; see text for more explanation.
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We came to the same conclusion by reading the graph that we can also come to using
the time dilation equation.

The x ′ axis can be calibrated in the same way by drawing lines straight up from the x-axis.
This is also shown in Figure 6.

3.2 Calibrating the axes using spacetime intervals

We used a very special case to calibrate our axes above. There is a more general way to
do this using the invariant spacetime interval and the Lorentz transformations. Consider
two events located at (x1, t1) and (x2, t2) in the Home Frame. Define an interval between

them as
√

(x2 – x1)2 – (t2 – t1)2 =
√
∆x2 – ∆t2. This is analogous to the Euclidean dis-

tance between two points, but with the minus sign in front of the time difference.

Let’s see how this quantity looks in the moving frame. For this, we cannot simply use the
time dilation and Lorentz contractions because simultaneous events in one frame are not
simultaneous in another. As an example, consider observing the simultaneous explosions
of two stars going supernova. In one frame, the two stars are at rest and we only have
a time difference to measure. In a frame moving at β with respect to this one, the two
explosions are at different times as well as distances, so we have a length difference and
a time difference to consider. No only that, but because of the nonsimultaneity, the loca-
tions are measured at different times and we must resort to the full Lorentz transformation
to calculate the interval in the moving frame.

The Lorentz and inverse Lorentz transformations, using γ = 1/(
√

1 – β2), are:

x = γ(βt ′ + x ′) (5)
t = γ(t ′ + βx ′) (6)

x ′ = γ(–βt + x) (7)
t ′ = γ(t – βx) (8)

At this moment you might be thinking: “Stop! Professor, you have forgotten to multiply
each factor of time by c!" Let’s stick with SR units, where c is a unitless quantity equal to
1. This means we don’t need to write it (but it wouldn’t be incorrect if you did).

By taking the difference x2 – x1 and t2 – t1, etc., you can show that:

∆x = γ(β∆t ′ + ∆x ′) (9)
∆t = γ(∆t ′ + β∆x ′) (10)
∆x ′ = γ(–β∆t + ∆x) (11)
∆t ′ = γ(∆t – β∆x) (12)
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These are just like the Lorentz and inverse Lorentz transformations, except it replaces the
coordinate quantities with the corresponding coordinate differences. Let’s use the last two
equations above to solve for the interval defined earlier in this section.

(∆x ′)2 – (∆t ′)2 = (γ(–β∆t + ∆x))2 – (γ(∆t – β∆x))2 (13)

= γ2(+β2(∆t)2 – β∆t∆x + (∆x)2) – ((∆t2) – β2∆t∆x + β2(∆x)2)(14)

= γ2(+β2(∆t)2 + (∆x)2 – (∆t)2 – β2(∆x)2) (15)

= γ2((1 – β2)(∆x)2 – (1 – β2)(∆t)2) (16)

=
1

1 – β2 ((1 – β2)(∆x)2 – (1 – β2)(∆t)2 (17)

(∆x ′)2 – (∆t ′)2 = (∆x)2 – (∆t)2 (18)

We’ve found the invariant spacetime interval. If we take ∆x as the difference between x
and the origin and ∆t to be the difference between t and the origin, then the equation for
a hyperbola passing through the point x = 0, t = t will be:

(∆t)2 – (∆x)2 = t2 (19)

For points on the x-axis, we similarly get:

(∆x)2 – (∆t)2 = x2 (20)

We can draw these hyperbolae onto our coordinate grid, as shown in Figure 7 as dashed
gray lines. Then, draw the coordinate axes (red lines) for the home frame, and the places
where the coordinate lines intersect with the hyperbolas are the grid points. Finally, how
do you read the correct t ′ and x ′ coordinates for an event that doesn’t take place right on
one of the axes? The grid lines for the Other Frame are drawn parallel to the axes. This
is shown in the right hand side of Figure 7.

A summary of the steps for drawing and interpreting a two-observer diagram are shown
in Figure 8
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Figure 7: Dashed gray lines show hyperbolae used to calibrate the coordinate axes for t ′

and x ′. On the right, grid lines for these axes are shown in red. In the figure, an event is
shown to appear at (x’,t’) = (1,2) yr. This correspond to (x,t) = (2.3, 2.9) yr.

9



Figure 8: Summary of the steps in drawing and interpreting a two-observer diagram.
Figure R6.1 of Moore.
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Figure 9: The Twin “Paradox", images from S. Schneider.

4 Using Spacetime Diagrams: The Twin Paradox

Two identical twins start at a common place and time, at the origin of coordinates. One of
the two then leaves on a trip at β = 0.6, travels out a distance of 6 light-years to “Planet
X" and then returns at β = –0.6. It will take 10 Earth years to get to the planet, and 10
years back (total time of 20 years elapsed on Earth). But, at that speed, the time dilation
equations tell us that the ship will experience 8 years of time elapsed on the way out, and
8 years on the way back ... so 16 ship years, for 20 earth years. Imagine both twins send
a signal to the other twin every time a year has passed.

First, set up the diagram with the two sets of axes. Include the return trip with the oppo-
site slope. Let’s count how many signals the ship receives from the Earth (notice the blue
Earth signal lines are moving upward diagonally, spaced every 1 Earth year, left of Figure
9). Also, the green dots on the ship path are the ship year markers.

On the way out - for every 2 ship years, it gets one signal (this fits the relativisitic Doppler
shift for this speed - should be 1/2 signal rate - not discussed yet). As soon as the ship
turns around and heads back (now the ship path heads back toward the time axis) - the
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rate doubles to 2 earth signals per ship year. So, on the way out - (8)(1/2) = 4 Earth
signals ... on the way back (8)(2) = 16 signals ... total = 20 Earth signals, as expected.

What if we turned it around, and looked at the ship sending out signals to the Earth. In
this case, when the ship thinks a year has passed, it sends a signal to the Earth (green
lines of unit slope - heading back toward the time). Notice when the ship heads toward the
planet, the Earth receives that 1/2 rate. At the Earth’s 10th year, the ship has technically
arrived at the planet, but the signal has just left the planet, and will take 6 years to get
back ... notice that for the Earth, the signal rate doesn’t change until the “arrival signal"
has gotten there. Only then does the rate double. So, to add up the time, (16)(1/2) = 8
signals until arrival - then (4)(2) = 8 signals .... thus 16 ship signals received by the Earth.

Notice the asymmetry in the problem due to the ship’s acceleration in the middle. This 
is what fixes the difference in ages of the twins; the one who accelerated is the younger 
one. Velocity is relative, acceleration is not. The supposed “paradox" is both twins would 
expect the other to be younger; this is resolved by recognizing that the moving twin is not 
in an inertial frame of reference for the trip.

This document was prepared based on Six Ideas That Shaped Physics by Thomas A. Moore, 
2nd Edition, Unit R: The Laws of Physics are Frame-Independent, Scott Schneider’s Contem-
porary Physics course at Lawrence Technological University (Twin Paradox), and includes direct 
quotations. Spacetime diagrams were created in Python.
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