

These parameters define a **ray vector**, which will change with distance, and/or as the ray propagates through optical interfaces and elements.

 $\begin{array}{c} y \\ \alpha \end{array}$

Ray Matrices

For many optical components, we can define 2 x 2 ray matrices.

An element's affect on a ray is found by multiplying its ray vector.

Ray matrices can describe simple and complex systems.

These matrices are often called ABCD Matrices.

Ray matrices as derivatives

Since the displacements and angles are assumed to be small, we can think in terms of partial derivatives.

$$y_{out} = \frac{\partial y_{out}}{\partial y_{in}} y_{in} + \frac{\partial y_{out}}{\partial \alpha_{in}} \alpha_{in}$$

For cascaded elements, we simply multiply ray matrices.

Notice that the order looks opposite to what you think it should be, but it makes sense when you think about it.

Translation Matrix

$$\alpha_{out} = \alpha_{in}$$
 $y_{out} = y_{in} + L \tan \alpha_{in} \cong y_{in} + L \alpha_{in}$

 $y_{out} = (1)y_{in} + (L)\alpha_{in}$ $\alpha_{out} = (0)y_{in} + (1)\alpha_{in}$

$$\begin{bmatrix} y_{out} \\ \alpha_{out} \end{bmatrix} = \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix} = \begin{bmatrix} 1 & x_{out} - x_{in} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix}$$

Paraxial Snell's Law:
$$n_1 \alpha_{in} = n_2 \alpha_{out} \implies \alpha_{out} = (0) y_{in} + \left(\frac{n_1}{n_2}\right) \alpha_{in}$$

$$\begin{bmatrix} y_{out} \\ \alpha_{out} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \left(\frac{n_1}{n_2}\right) \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix}$$

Refraction Matrix – Curved Interface

Paraxial Snell's Law:
$$n_1 \theta_1 = n_2 \theta_2 \rightarrow n_1 \left(\alpha_{in} + \frac{y_{in}}{R} \right) = n_2 \left(\alpha_{out} + \frac{y_{in}}{R} \right)$$

$$\alpha_{out} = \left(\frac{n_1}{n_2}\right) \left(\alpha_{in} + \frac{y_{in}}{R}\right) - \frac{y_{in}}{R} = \left[\frac{1}{R} \left(\frac{n_1}{n_2} - 1\right) y_{in} + \left(\frac{n_1}{n_2}\right) \alpha_{in}\right]$$

Refraction Matrix – Curved Interface

$$\alpha_{out} = \left[\frac{1}{R}\left(\frac{n_1}{n_2} - 1\right)\right] y_{in} + \left(\frac{n_1}{n_2}\right) \alpha_{in}$$

$$\begin{bmatrix} y_{out} \\ \alpha_{out} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{R} \left(\frac{n_1}{n_2} - 1 \right) \left(\frac{n_1}{n_2} \right) \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix}$$

Concave surface: R < 0Convex surface: R > 0

Reflection Matrix

$$\alpha_{out} = \theta_1 + \theta_2 - \alpha_{in} \qquad \theta_1 = \alpha_{in} - \phi = \alpha_{in} - \frac{y_{in}}{-R} = \alpha_{in} + \frac{y_{in}}{-R}$$

Law of Reflection: $\theta_1 = \theta_2$

$$\alpha_{out} = 2\theta_1 - \alpha_{in} = \alpha_{in} + \frac{2}{R}y_{in}$$

$$y_{out} = (1)y_{in} + (0)\alpha_{in}$$
$$\alpha_{out} = \left(\frac{2}{R}\right)y_{in} + (1)\alpha_{in}$$

$$\begin{bmatrix} y_{out} \\ \alpha_{out} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{2}{R} & 1 \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix}$$

Thick Lens Matrix

Thin Lens Matrix

The thin lens matrix is found by setting t = 0: *Thin lens matrix*:

Consecutive thin lenses

Suppose we have two lenses right next to each other (with no space in between).

$$M_{tot} = \begin{bmatrix} 1 & 0 \\ -1/f_2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f_1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/f_1 - 1/f_2 & 1 \end{bmatrix}$$
$$1/f_{tot} = 1/f_1 + 1/f_2$$

So two consecutive lenses act as one whose focal length is computed by the resistive sum.

As a result, we define a measure of inverse lens focal length, the diopter. 1 diopter = 1 m^{-1}

Summary of Matrix Methods

Translation Matrix:

$$M = \left[\begin{array}{cc} 1 & L \\ 0 & 1 \end{array} \right]$$

Refraction matrix, spherical interface:

$$M = \begin{bmatrix} 1 & 0 \\ \frac{1}{R} \left(\frac{n_1}{n_2} - 1 \right) & \frac{n_1}{n_2} \end{bmatrix}$$

Refraction matrix, plane interface:

$$M = \begin{bmatrix} 1 & 0 \\ 0 & \frac{n_1}{n_2} \end{bmatrix}$$

Summary of Matrix Methods

Thin-lens Matrix:

$$M = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix}$$
$$\frac{1}{f} = \left(\frac{n_L}{n} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

(+f): Converging (-f): Diverging

Spherical mirror matrix:

$$M = \left[\begin{array}{rrr} 1 & 0 \\ \frac{2}{R} & 1 \\ \end{array} \right]$$

(+R): Convex (-R): Concave

Any paraxial optical system, no matter how complicated, can be represented by a 2x2 optical matrix. This matrix M is usually denoted

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

A useful property of this matrix is that

Det
$$M = AD - BC = \frac{n_{in}}{n_{out}}$$

where n_{in} and n_{out} are the refractive indices of the input and output media of the optical system. Usually, the medium will be air on both sides of the optical system and

Det
$$M = AD - BC = \frac{n_{in}}{n_{out}} = 1$$

$$\begin{bmatrix} y_{out} \\ \alpha_{out} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix} \implies$$

$$y_{out} = Ay_{in} + B\alpha_{in}$$
$$\alpha_{out} = Cy_{in} + D\alpha_{in}$$

Let's examine the implications when any of the four elements of the system matrix is equal to zero.

Let's see what happens when D = 0.

$$\begin{bmatrix} y_{out} \\ \alpha_{out} \end{bmatrix} = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix}$$

$$y_{out} = Ay_{in} + B\alpha_{in}$$
$$\alpha_{out} = Cy_{in}$$

Let's see what happens when D = 0.

When D = 0, the input plane for the optical system is the input focal plane.

Let's see what happens when A = 0.

$$\begin{bmatrix} y_{out} \\ \alpha_{out} \end{bmatrix} = \begin{bmatrix} 0 & B \\ C & D \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix}$$

$$y_{out} = B\alpha_{in}$$
$$\alpha_{out} = Cy_{in} + D\alpha_{in}$$

Let's see what happens when A = 0.

When A = 0, the output plane for the optical system is the output focal plane.

Let's see what happens when C = 0.

$$\begin{bmatrix} y_{out} \\ \alpha_{out} \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix}$$

$$y_{out} = Ay_{in} + B\alpha_{in}$$
$$\alpha_{out} = D\alpha_{in}$$

Let's see what happens when C = 0.

When C = 0, collimated light at the input plane is collimated light at the output plane, but the angle with the optical axis is different. This is a telescopic arrangement, with an angular magnification of $D = \alpha_{out} / \alpha_{in}$.

Let's see what happens when B = 0.

$$\begin{bmatrix} y_{out} \\ \alpha_{out} \end{bmatrix} = \begin{bmatrix} A & 0 \\ C & D \end{bmatrix} \begin{bmatrix} y_{in} \\ \alpha_{in} \end{bmatrix}$$

$$y_{out} = Ay_{in}$$
$$\alpha_{out} = Cy_{in} + D\alpha_{in}$$

Let's see what happens when B = 0.

When B = 0, the input and output planes are object and image planes, respectively, and the transverse magnification of the system m = A.

When D = 0, the input plane for the optical system is the input focal plane.

When A = 0, the output plane for the optical system is the output focal plane.

When B = 0, the input and output planes are object and image planes, respectively, and the transverse magnification of the system m = A.

When C = 0, collimated light at the input plane is collimated light at the output plane, but the angle with the optical axis is different. This is a telescopic arrangement, with an angular magnification of $D = \alpha_{out} / \alpha_{in}$.

The matrix elements of the system matrix can be analyzed to determine the cardinal points and planes of an optical system.

Cardinal Points

Located relative to input (1) and output (2) reference planes.

+ values are to the right of the plane.- values are to the left of the plane.

Located relative to principal planes.