
The Ray 
Vector	


A light ray can be defined by two coordinates:	


its “height”, y	

	

its slope,	


These parameters define a ray vector,          ���
which will change with distance, and/or 
as the ray propagates through optical 
interfaces and elements.	
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Ray Matrices	

For many optical components, we can define 2 x 2 ray matrices.	


An element’s affect on a ray is found by multiplying its ray vector.	


Ray matrices	

can describe	

simple and com-	

plex systems.	


These matrices are often called ABCD Matrices.	
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Ray matrices as 
derivatives	


We can write 
these equations 
in matrix form.	
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Since the displacements and 
angles are assumed to be small, 
we can think in terms of partial 
derivatives.	




For cascaded elements, we simply 
multiply ray matrices.	
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Notice that the order looks opposite to what you think it 
should be, but it makes sense when you think about it.	
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 M3	
M2	
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Translation Matrix     
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Refraction Matrix – Flat Interface     
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Refraction Matrix – Curved Interface     
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Refraction at first surface :
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Thick lens matrix : M = M3 M2 M1
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Thin lens matrix :
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The thin lens matrix is found by setting t = 0:	
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Consecutive thin 
lenses	
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Suppose we have two lenses 
right next to each other (with no 
space in between).	


tot 1 21/ =1/ +1/f f f

So two consecutive lenses act as one whose focal length is computed by 
the resistive sum.	


As a result, we define a measure of inverse lens focal length, the diopter.���
                                    1 diopter = 1 m-1	
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Summary of Matrix Methods 
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Summary of Matrix Methods 
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System Ray-Transfer Matrix     

Any paraxial optical system, no matter how complicated, can be 
represented by a 2x2 optical matrix.  This matrix M is usually denoted	


A B
M

C D
⎡ ⎤
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⎣ ⎦

A useful property of this matrix is that 	


  
Det M = AD − BC =

nin

nout

where  nin and nout are the refractive indices of the input and output 
media of the optical system.  Usually, the medium will be air on both 
sides of the optical system and 	
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nout

= 1



System Ray-Transfer Matrix     
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Let’s examine the implications when any of the four elements of the 
system matrix is equal to zero. 	




System Ray-Transfer Matrix     
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Let’s see what happens when D = 0.  	




System Ray-Transfer Matrix     

When D = 0, the input plane for the optical system is the input focal 
plane.	
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Let’s see what happens when D = 0.  	




System Ray-Transfer Matrix     

Let’s see what happens when A = 0.  	
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System Ray-Transfer Matrix     

When A = 0, the output plane for the optical system is the output focal 
plane.	
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System Ray-Transfer Matrix     
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Let’s see what happens when C = 0.  	




System Ray-Transfer Matrix     

When C = 0, collimated light at the input plane is collimated light at the 
output plane, but the angle with the optical axis is different.  This is a 
telescopic arrangement, with an angular magnification of                      .  	
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Let’s see what happens when C = 0.  	




System Ray-Transfer Matrix     
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Let’s see what happens when B = 0.  	




System Ray-Transfer Matrix     

When B = 0, the input and output planes are object and image planes, 
respectively, and the transverse magnification of the system m = A. 	
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Let’s see what happens when B = 0.  	




System Ray-Transfer Matrix – Summary     

When B = 0, the input and output planes are object and image planes, 
respectively, and the transverse magnification of the system m = A. 	


When C = 0, collimated light at the input plane is collimated light at the 
output plane, but the angle with the optical axis is different.  This is a 
telescopic arrangement, with an angular magnification of                      .  	
 D = α out α in

When A = 0, the output plane for the optical system is the output focal 
plane.	


When D = 0, the input plane for the optical system is the input focal 
plane.	




System Ray-Transfer Matrix     

The matrix elements of the system matrix can be analyzed to determine 
the cardinal points and planes of an optical system.  	
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⎭
⎪
⎪

Located relative to input (1) and 
output (2) reference planes.	

	

+ values are to the right of the plane.	

– values are to the left of the plane.	


Located relative to principal 
planes. 	


Cardinal Points     


