The Ray Vector

A light ray can be defined by two coordinates:
its "height", y
its slope, α

These parameters define a ray vector, which will change with distance, and/or as the ray propagates through optical

$$
\left[\begin{array}{l}
y \\
\alpha
\end{array}\right]
$$ interfaces and elements.

Ray Matrices

For many optical components, we can define 2×2 ray matrices.
An element's affect on a ray is found by multiplying its ray vector.

These matrices are often called ABCD Matrices.

Ray matrices as derivatives

$$
y_{\text {out }}=\frac{\partial y_{\text {out }}}{\partial y_{\text {in }}} y_{\text {in }}+\frac{\partial y_{\text {out }}}{\partial \alpha_{\text {in }}} \alpha_{\text {in }}
$$

Since the displacements and angles are assumed to be small, we can think in terms of partial $\alpha_{\text {out }}=\frac{\partial \alpha_{\text {out }}}{\partial y_{\text {in }}} y_{\text {in }}+\frac{\partial \alpha_{\text {out }}}{\partial \alpha_{\text {in }}} \alpha_{\text {in }}$ derivatives.

We can write these equations in matrix form.

For cascaded elements, we simply multiply ray matrices.

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right] \square \boldsymbol{M}_{\mathbf{1}} \square \boldsymbol{M}_{\mathbf{2}} \rightarrow\left[\begin{array}{l}
y_{\text {out }} \\
\alpha_{\text {out }}
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{\text {out }} \\
\alpha_{\text {out }}
\end{array}\right]=M_{3}\left\{M_{2}\left(M_{1}\left[\begin{array}{c}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right]\right)\right\}=M_{3} M_{2} M_{1}\left[\begin{array}{c}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right]}
\end{aligned}
$$

Notice that the order looks opposite to what you think it should be, but it makes sense when you think about it.

Translation Matrix

$$
\alpha_{\text {out }}=\alpha_{\text {in }} \quad y_{\text {out }}=y_{\text {in }}+L \tan \alpha_{\text {in }} \cong y_{\text {in }}+L \alpha_{\text {in }}
$$

$$
y_{\text {out }}=(1) y_{\text {in }}+(L) \alpha_{\text {in }}
$$

$$
\alpha_{\text {out }}=(0) y_{i n}+(1) \alpha_{\text {in }}
$$

$$
\left[\begin{array}{c}
y_{\text {out }} \\
\alpha_{\text {out }}
\end{array}\right]=\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{\text {out }}-x_{\text {in }} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right]
$$

Refraction Matrix - Flat Interface

Paraxial Snell's Law: $\quad n_{1} \alpha_{\text {in }}=n_{2} \alpha_{\text {out }} \Rightarrow \alpha_{\text {out }}=(0) y_{\text {in }}+\left(\frac{n_{1}}{n_{2}}\right) \alpha_{\text {in }}$

$$
\left[\begin{array}{c}
y_{\text {out }} \\
\alpha_{\text {out }}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & \left(\frac{n_{1}}{n_{2}}\right)
\end{array}\right]\left[\begin{array}{c}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right]
$$

Refraction Matrix - Curved Interface

Paraxial Snell's Law: $n_{1} \theta_{1}=n_{2} \theta_{2} \rightarrow \quad n_{1}\left(\alpha_{\text {in }}+\frac{y_{\text {in }}}{R}\right)=n_{2}\left(\alpha_{\text {out }}+\frac{y_{\text {in }}}{R}\right)$

$$
\alpha_{\text {out }}=\left(\frac{n_{1}}{n_{2}}\right)\left(\alpha_{\text {in }}+\frac{y_{\text {in }}}{R}\right)-\frac{y_{\text {in }}}{R}=\frac{1}{R}\left(\frac{n_{1}}{n_{2}}-1\right) y_{\text {in }}+\left(\frac{n_{1}}{n_{2}}\right) \alpha_{\text {in }}
$$

Refraction Matrix - Curved Interface

Reflection Matrix

$$
\alpha_{o u t}=\theta_{1}+\theta_{2}-\alpha_{i n} \quad \theta_{1}=\alpha_{i n}-\phi=\alpha_{i n}-\frac{y_{i n}}{-R}=\alpha_{i n}+\frac{y_{i n}}{R}
$$

Law of Reflection: $\quad \theta_{1}=\theta_{2}$

$$
\begin{aligned}
& \alpha_{o u t}=2 \theta_{1}-\alpha_{i n}=\alpha_{i n}+\frac{2}{R} y_{i n} \\
& y_{\text {out }}=(1) y_{i n}+(0) \alpha_{i n} \\
& \alpha_{\text {out }}=\left(\frac{2}{R}\right) y_{i n}+(1) \alpha_{\text {in }}
\end{aligned}
$$

$$
\left[\begin{array}{l}
y_{\text {out }} \\
\alpha_{\text {out }}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\frac{2}{R} & 1
\end{array}\right]\left[\begin{array}{c}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right]
$$

Thick Lens Matrix

Refraction at first surface:

$$
\left[\begin{array}{c}
y_{1} \\
\alpha
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{R_{1}}\left(\frac{n_{1}}{n_{L}}-1\right) & \frac{n_{1}}{n_{L}}
\end{array}\right]\left[\begin{array}{c}
y_{i n} \\
\alpha_{i n}
\end{array}\right]=M_{1}\left[\begin{array}{c}
y_{i n} \\
\alpha_{i n}
\end{array}\right]
$$

Translation from 1st surface to 2nd surface: $\quad\left[\begin{array}{l}y_{2} \\ \alpha\end{array}\right]=\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ \alpha\end{array}\right]=M_{2}\left[\begin{array}{l}y_{1} \\ \alpha\end{array}\right]$
Refraction at second surface: $\quad\left[\begin{array}{c}y_{\text {out }} \\ \alpha_{\text {out }}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{R_{2}}\left(\frac{n_{L}}{n_{2}}-1\right) & \frac{n_{L}}{n_{2}}\end{array}\right]\left[\begin{array}{c}y_{2} \\ \alpha\end{array}\right]=M_{3}\left[\begin{array}{c}y_{2} \\ \alpha\end{array}\right]$

Thick Lens Matrix

Thick lens matrix: $\quad M=M_{3} M_{2} M_{1}$
$M=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{R_{2}}\left(\frac{n_{L}}{n_{2}}-1\right) & \frac{n_{L}}{n_{2}}\end{array}\right]\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ \frac{1}{R_{1}}\left(\frac{n_{1}}{n_{L}}-1\right) & \frac{n_{1}}{n_{L}}\end{array}\right.$

Assuming $n_{1}=n_{2}=n$:

$$
\begin{aligned}
& \text { Assuming } n_{1}=n_{2}=n \text { : } \\
& \left.\qquad \begin{array}{rl}
0 & =\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{R_{2}}\left(\frac{n_{L}}{n}-1\right) & \frac{n_{L}}{n}
\end{array}\right]\left[\begin{array}{c}
1+\frac{t}{R_{1}}\left(\frac{n}{n_{L}}-1\right) \\
\frac{1}{R_{1}}\left(\frac{n}{n_{L}}-1\right) \\
n_{L} \\
n_{L}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+\frac{n}{R_{1}}\left(\frac{n}{n_{L}}-1\right) \\
\frac{1}{R_{2}}\left(\frac{n_{L}}{n}-1\right)\left[1+\frac{t}{R_{L}}\left(\frac{n}{n_{L}}-1\right)\right]-\frac{1}{R_{1}}\left(\frac{n_{L}}{n}-1\right) & 1-\frac{t}{R_{2}}\left(\frac{n}{n_{L}}-1\right)
\end{array}\right]
\end{array} . \begin{array}{c}
\text { Plane }
\end{array}\right]
\end{aligned}
$$

Thick Lens Matrix

$$
M=\left[\begin{array}{cc}
1+\frac{t}{R_{1}}\left(\frac{n}{n_{L}}-1\right) & t \frac{n}{n_{L}} \\
\frac{1}{R_{2}}\left(\frac{n_{L}}{n}-1\right)\left[1+\frac{t}{R_{1}}\left(\frac{n}{n_{L}}-1\right)\right]-\frac{1}{R_{1}}\left(\frac{n_{L}}{n}-1\right) & 1-\frac{t}{R_{2}}\left(\frac{n}{n_{L}}-1\right)
\end{array}\right]
$$

Thin Lens Matrix

The thin lens matrix is found by setting $t=0$:
Thin lens matrix :

$$
\begin{aligned}
& M=\left[\begin{array}{cc}
1 & 0 \\
\left(\frac{n_{L}}{n}-1\right)\left(\frac{1}{R_{2}}-\frac{1}{R_{1}}\right) & 1
\end{array}\right] \\
& \text { but } \frac{1}{f}=\left(\frac{n_{L}}{n}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& M=\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right]
\end{aligned}
$$

Consecutive thin

lenses

Suppose we have two lenses right next to each other (with no space in between).

$$
\begin{gathered}
M_{\text {tot }}=\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{1} & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{1}-1 / f_{2} & 1
\end{array}\right] \\
1 / f_{\text {tot }}=1 / f_{1}+1 / f_{2}
\end{gathered}
$$

So two consecutive lenses act as one whose focal length is computed by the resistive sum.

As a result, we define a measure of inverse lens focal length, the diopter.
1 diopter $=1 \mathrm{~m}^{-1}$

Summary of Matrix Methods

Translation Matrix:

$$
M=\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right]
$$

Refraction matrix, spherical interface:

$$
M=\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{R}\left(\frac{n_{1}}{n_{2}}-1\right) & \frac{n_{1}}{n_{2}}
\end{array}\right]
$$

Refraction matrix, plane interface:

$$
M=\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{n_{1}}{n_{2}}
\end{array}\right]
$$

Summary of Matrix Methods

Thin-lens Matrix:

$$
\begin{aligned}
& M=\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right] \\
& \frac{1}{f}=\left(\frac{n_{L}}{n}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
\end{aligned}
$$

$(+f)$: Converging ($-f$): Diverging

Spherical mirror
matrix:

$$
M=\left[\begin{array}{cc}
1 & 0 \\
\frac{2}{R} & 1
\end{array}\right]
$$

$(+R)$: Convex ($-R$): Concave

System Ray-Transfer Matrix

Any paraxial optical system, no matter how complicated, can be represented by a 2×2 optical matrix. This matrix M is usually denoted

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

A useful property of this matrix is that

$$
\operatorname{Det} M=A D-B C=\frac{n_{i n}}{n_{o u t}}
$$

where $n_{\text {in }}$ and $n_{\text {out }}$ are the refractive indices of the input and output media of the optical system. Usually, the medium will be air on both sides of the optical system and

$$
\operatorname{Det} M=A D-B C=\frac{n_{\text {in }}}{n_{\text {out }}}=1
$$

System Ray-Transfer Matrix

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{\text {out }} \\
\alpha_{\text {out }}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
y_{\text {in }} \\
\alpha_{i n}
\end{array}\right] \Rightarrow} \\
& y_{\text {out }}=A y_{\text {in }}+B \alpha_{\text {in }} \\
& \alpha_{\text {out }}=C y_{\text {in }}+D \alpha_{\text {in }}
\end{aligned}
$$

Let's examine the implications when any of the four elements of the system matrix is equal to zero.

System Ray-Transfer Matrix

Let's see what happens when $D=0$.

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{\text {out }} \\
\alpha_{\text {out }}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & 0
\end{array}\right]\left[\begin{array}{c}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right]} \\
& y_{\text {out }}=A y_{\text {in }}+B \alpha_{\text {in }} \\
& \alpha_{\text {out }}=C y_{\text {in }}
\end{aligned}
$$

System Ray-Transfer Matrix

Let's see what happens when $D=0$.

When $D=0$, the input plane for the optical system is the input focal plane.

System Ray-Transfer Matrix

Let's see what happens when $A=0$.

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{\text {out }} \\
\alpha_{\text {out }}
\end{array}\right]=\left[\begin{array}{ll}
0 & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right]} \\
& y_{\text {out }}=B \alpha_{\text {in }} \\
& \alpha_{\text {out }}=C y_{i n}+D \alpha_{\text {in }}
\end{aligned}
$$

System Ray-Transfer Matrix

Let's see what happens when $A=0$.

When $A=0$, the output plane for the optical system is the output focal plane.

System Ray-Transfer Matrix

Let's see what happens when $C=0$.

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{o u t} \\
\alpha_{\text {out }}
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right]\left[\begin{array}{l}
y_{i n} \\
\alpha_{\text {in }}
\end{array}\right]} \\
& y_{o u t}=A y_{i n}+B \alpha_{\text {in }} \\
& \alpha_{o u t}=D \alpha_{i n}
\end{aligned}
$$

System Ray-Transfer Matrix

Let's see what happens when $C=0$.

When $C=0$, collimated light at the input plane is collimated light at the output plane, but the angle with the optical axis is different. This is a telescopic arrangement, with an angular magnification of $D=\alpha_{\text {out }} / \alpha_{\text {in }}$.

System Ray-Transfer Matrix

Let's see what happens when $B=0$.

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{\text {out }} \\
\alpha_{\text {out }}
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
C & D
\end{array}\right]\left[\begin{array}{c}
y_{\text {in }} \\
\alpha_{\text {in }}
\end{array}\right]} \\
& y_{\text {out }}=A y_{\text {in }} \\
& \alpha_{\text {out }}=C y_{\text {in }}+D \alpha_{\text {in }}
\end{aligned}
$$

System Ray-Transfer Matrix

Let's see what happens when $B=0$.

When $B=0$, the input and output planes are object and image planes, respectively, and the transverse magnification of the system $m=A$.

System Ray-Transfer Matrix - Summary

When $D=0$, the input plane for the optical system is the input focal plane.

When $A=0$, the output plane for the optical system is the output focal plane.

When $B=0$, the input and output planes are object and image planes, respectively, and the transverse magnification of the system $m=A$.

When $C=0$, collimated light at the input plane is collimated light at the output plane, but the angle with the optical axis is different. This is a telescopic arrangement, with an angular magnification of $D=\alpha_{\text {out }} / \alpha_{\text {in }}$.

System Ray-Transfer Matrix

The matrix elements of the system matrix can be analyzed to determine the cardinal points and planes of an optical system.

$$
\left.\begin{array}{ll}
p=\frac{D}{C} & F_{1} \\
q=-\frac{A}{C} & F_{2} \\
r=\frac{D-n_{\text {in }} / n_{\text {out }}}{C} & H_{1} \\
s=\frac{1-A}{C} & H_{2} \\
v=\frac{D-1}{C} & N_{1} \\
w=\frac{n_{\text {in }} / n_{\text {out }}-A}{C} & N_{2}
\end{array}\right\} \begin{aligned}
& \text { Cardinal Points } \\
& f_{1}=p-r=\frac{n_{\text {in }} / n_{\text {out }}}{C} \\
& f_{2}=q-s=-\frac{1}{C}
\end{aligned}
$$

