1) Find all of the roots of $\sqrt[3]{216}$.
2) Find the solutions to $z^{2} \quad z+5 \quad 5 i=0$.
3) Show that $A e^{i\left(k c^{t+}\right)}$ is a solution to the partial differential wave equation (for a wave in a string)

$$
\frac{{ }^{2} y}{x^{2}}=\frac{}{F^{t e n s}} \frac{{ }^{2} y}{t^{2}},
$$

but only if $\frac{k^{2}}{F^{\text {tens }}}=\frac{.}{2}$.
4) Consider the complex function $z(t)=z_{1}(t)+z_{2}(t)=A_{1} e^{i\left(t+{ }_{1}\right)}+A_{2} e^{i\left(t+{ }_{2}\right)}$.
(a) Using the properties of complex exponentials, show that

$$
\left.|z|^{2}=A_{1}^{2}+A_{2}^{2}+A_{1} A_{2}\left(e^{i\left(\begin{array}{ll}
1 & 2
\end{array}\right)}+e^{i(2} \quad 1\right)\right) .
$$

(b) Show that your result to part (a) can also be written as $|z|^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \left(\begin{array}{ll}2 & 1\end{array}\right)$.
5) Show that
(a) $\frac{d}{d z} \sin (z)=\cos (z)$
(b) $\frac{d}{d z} \cos (z)=\sin (z)$
6) Show that $2 \sin z_{1} \cos z_{2}=\sin \left(z_{1}+z_{2}\right)+\sin \left(z_{1} \quad z_{2}\right)$.

