Physics 309

Meeting Mathematica

Introduction

I've designed these exercises to help you become comfortable loading Mathematica, saving files, entering Mathematica commands, asking the program for help, and performing a few other basic chores.

Be careful to type in each command exactly as written here. In particular, be very careful to type in precisely corresponding capital and lowercase letters, special symbols, and space between characters.

As you work these exercises, keep your brain engaged! It's especially important at this early stage for you to pay obsessive attention to the syntax of each command. As you work, think about how Mathematica responds to your commands. Identify common elements of syntax in the commands. If you don't know what a command does, ask Mathematica using the on-line help. If something doesn't work, ask a fellow student or ask me!

Feel free to play around. Once you've executed and deciphered each command, try changing one or more arguments to produce different output. Or try using previous commands you've already explored together with the one you're working on at the moment. That's the best way to learn Mathematica.

First Exercises with Mathematica

1. It's easy to make Mathematica generate a list of numbers (or functions). Try
```
Table[ n, {n, 2, 17}] and Range[2,17].
```

2. You can make Mathematica simplify complicated expressions, without making algebraic errors. Try
```
Simplify[(x + y)(x^2 - x*y + y^2)]
```

3. You can use Mathematica to evaluate definite and indefinite integration quickly and accurately. Try
```
Integrate[x Cos[x^2], x]
Integrate[ x Cos[x^2], {x, 0, 4}]
N[ Integrate[ x Cos[x^2], {x, 0, 4}] ]
```

Note that Mathematica gives you an exact answer for the definite integral unless you ask it for a numerical value, using N .
4. Mathematica will even help you do double integrals. To evaluate

$$
\int_{0}^{\pi / 6} \int_{0}^{\pi / 2}(y \sin x-x \sin y) d x d y
$$

enter this command

```
Integrate[ y Sin[x] - x Sin[y], {x, 0, Pi/6}, {y, 0, Pi/2}]
```

Make Mathematica tell you the numerical value for this double integral.
5. You can use Mathematica to take the drudgery out of solving all sorts of equations-including transcendental equations. The first step in solving the transcendental equation

$$
\cos x-x=0
$$

using Mathematica is to determine an initial guess at the solution by drawing a graph.
(a) First the graph
$\operatorname{Plot}[\operatorname{Cos}[x]-x,\{x, 0,1\}]$
(b) Now we look at the graph to determine a root-a value of x at which the left-hand-side of the equation is zero. Let's choose $x=0.5$ as our initial guess. We tell Mathematica to find the solution of the equation (its root) using FindRoot:

FindRoot $[\operatorname{Cos}[x]=x,\{x, 0.5\}]$
(c) Using the graph, can you suggest a better initial guess than $\mathrm{x}=0.5$? Try your guess in FindRoot.
6. You can use Mathematica to evaluate infinite summations, analytically and numerically. Try

```
Sum[1/i^3, {i, 1, Infinity}]
Sum[1/i^3, {i, 1, Infinity}] // N
```

Note that the second command gets a numerical value by "piping" the output of the Sum command into the "number" command \mathbf{N}. You can pipe the output of most Mathematica commands into most other Mathematica commands. This tactic makes it easy to understand your notebooks (and avoid errors.)
7. Mathematica makes it easy to apply functions to several arguments. We arrange the arguments into Mathematica expressions called lists and feed these lists into Mathematica's built-in functions. Watch what happens when you try

```
Sqrt[\{a, b, c, d\}]
Expand[\{\{(a+b)^2, \(\left.\left.(a+b)^{\wedge 3}\right\}\right]\)
\(D[\{x \wedge 2, x \wedge 3, \operatorname{Exp}[-x], \operatorname{Sin}[x]\}, x]\)
```

This amazingly powerful feature is called listability.
8. Mathematica has awesome three-dimensional graphics capabilities. Type in the following command to see a three-dimensional parametric plot of a familiar figure:

```
bagel = ParametricPlot3D[
    {Cos[s] (2 + Cos[t]), Sin[s] (2 + Cos[t]), Sin[t]},
    {s, 0, 2Pi}, {t, 0, 2Pi},
    Boxed->False, Axes->None]
```

Notice that I named the plot bagel.
This lets me use the plot in subsequent commands. For instance, to get a different view of our bagel, try

```
Show[bagel, ViewPoint->{3,1,1}]
```

