For all of the following problems, graph the shape using Mathematica (except for problem 3), as well as check your answer with Mathematica.

1) Use a triple integral to find the volume for $z=2-x-y$ above the area bounded by the x-axis, $x=1$, and $y=x$.
2) Use a triple integral to find the volume for $z=x \sin y$ above the area bounded by the x-axis, $x=\pi$, and $y=\pi-x$.
3) Use a triple integral to find the volume for $z=\sin x$ above the area shown.

4) Use a triple integral to find the volume for $z=x$ above the area bounded by the parabola $x^{2}-y=0$ and the straight line $2 x-y+8=0$.
5) Use a triple integral to find the volume for $z=8-x+y$ above the area bounded by square with vertices $(0,0),(2,0), 0,2)$, and $(2,2)$.
