1) A thin rod 10 m long has a density which varies uniformly from $4 \mathrm{~kg} / \mathrm{m}$ to $24 \mathrm{~kg} / \mathrm{m}$. Find.
(a) The mass, M.
(b) The center of mass, \bar{x}.
(c) The rotational inertia about an axis perpendicular to the rod and through the center of mass, I_{m}. Give your answer as a multiple of the mass, M.
(d) The rotational inertia about an axis perpendicular to the rod and passing through the thick end, I. Give your answer as a multiple of the mass, M.
2)

(a) Using spherical coordinates, find the volume inside the cone $z^{2}=x^{2}+y^{2}$ and between the planes $z=1$ and $z=2$.
(b) Do (a) using cylindrical coordinates.
3) Find the Jacobian $\partial(x, y) / \partial(u, v)$ for the transformation from cartesian coordinates to parabolic cylindrical coordinates:

$$
\begin{aligned}
& x=\frac{1}{2}\left(u^{2}-v^{2}\right) \\
& y=u v \\
& z=z
\end{aligned}
$$

