1) Show that $\frac{\partial^{2} f(x, y)}{\partial x \partial y}=\frac{\partial^{2} f(x, y)}{\partial y \partial x}$ for
(a) $\quad f(x)=e^{x y^{2}}$
(b) $\quad f(x)=\sin ^{2}(x) \cos \left(y^{2}\right)$
2) Given $x e^{y}=y e^{x}$, use implicit differentiation to find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $y \neq 1$.
(Hint: after finding $\frac{d y}{d x}$, use the fact that $\frac{e^{x}}{e^{y}}=\frac{x}{y}$ and $\frac{e^{y}}{e^{x}}=\frac{y}{x}$ to simplify your answer. Do the same after finding $\left.\frac{d^{2} y}{d x^{2}}\right)$.

The Mathematica commands ContourPlot[] and Show[] will be your friends for the next two problems.
3) Given $y e^{x y}=\sin x$, use implicit differentiation to find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $(0,0)$. Use Mathematica to plot the curve to see if your results make sense.
4) If $x y^{3}-y x^{3}=6$, is the equation of a curve, find the slope and the equation of the tangent line at the point $(1,2)$. Use Mathematica to plot the curve and the tangent line on the same axis.

