For each of the following problems, first find the answer by hand, and then use Mathematica to check your answer.

1) Find f'(x) [space derivative] for

$$f(x) = A\sin^3 \left[B\cos^2 \left(Ce^{ax^2} \right) \right]$$
(1)

2) Find $\dot{f}(t)$ [time derivative] for

$$f(t) = (a+bt)^{2} \sin(ct^{2})$$
(2)

3) Find f'(x) [space derivative] for

$$f(x) = x \left(\ln(ax) \right)^3 \tag{3}$$

4) Find
$$\int f(x) dx$$
 for

$$f(x) = x\left(e^{ax^2 - 1}\right) \tag{4}$$

5) Find
$$\int f(t)dt$$
 for $f(t) = \cos^2(\omega t)\sin(\omega t)$ (5)

6) Find
$$\int f(x) dx$$
 for $f(x) = x^8 \ln(\alpha x)$ (5)

7) Find
$$\int_{-a}^{+a} f(x) dx$$
 for $f(x) = x \cos^2\left(\frac{\pi}{2a}x\right)$ (6)

(**Hint**: plot the function f(x) first using Mathematica. How would the answer change if you replaced the cosine function with the sine function?)

8) Newton's 2nd Law (in one dimension) is sometimes written as $F_x^{net} = ma_x$, and sometimes written as $F_x^{net} = dp_x/dt$, where $p_x \equiv mv_x$ is the momentum. Are these the same equation? If not, which one is correct?