For each of the following problems, first find the answer by hand, and then use Mathematica to check your answer.

1) Find $f^{\prime}(x)$ [space derivative] for

$$
\begin{equation*}
f(x)=A \sin ^{3}\left[B \cos ^{2}\left(C e^{a x^{2}}\right)\right] \tag{1}
\end{equation*}
$$

2) Find $\dot{f}(t)$ [time derivative] for

$$
\begin{equation*}
f(t)=(a+b t)^{2} \sin \left(c t^{2}\right) \tag{2}
\end{equation*}
$$

3) Find $f^{\prime}(x)$ [space derivative] for

$$
\begin{equation*}
f(x)=x(\ln (a x))^{3} \tag{3}
\end{equation*}
$$

4) Find $\int f(x) d x$ for

$$
\begin{equation*}
f(x)=x\left(e^{a x^{2}-1}\right) \tag{4}
\end{equation*}
$$

5) Find $\int f(t) d t$ for

$$
\begin{equation*}
f(t)=\cos ^{2}(\omega t) \sin (\omega t) \tag{5}
\end{equation*}
$$

6) Find $\int f(x) d x$ for

$$
\begin{equation*}
f(x)=x^{8} \ln (\alpha x) \tag{5}
\end{equation*}
$$

7) Find $\int_{-a}^{+a} f(x) d x$ for

$$
\begin{equation*}
f(x)=x \cos ^{2}\left(\frac{\pi}{2 a} x\right) \tag{6}
\end{equation*}
$$

(Hint: plot the function $f(x)$ first using Mathematica. How would the answer change if you replaced the cosine function with the sine function?)
8) Newton's $2^{\text {nd }}$ Law (in one dimension) is sometimes written as $F_{x}^{\text {net }}=m a_{x}$, and sometimes written as $F_{x}^{n e t}=d p_{x} / d t$, where $p_{x} \equiv m v_{x}$ is the momentum. Are these the same equation? If not, which one is correct?

