Homework Set 1

Just as a reminder, on all homeworks this semester, please show your work and explain your reasoning. I will grade for clarity of explanation as much as I do for mere "correctness of final answer"!

1) In a water purification process, one-nth of the impurity is removed in the first stage. In each succeeding stage, the amount of impurity removed is one- nth of that removed in the preceding stage. Show that if $n=2$, the water can be made as pure as you like, but that if $n=3$, at least onehalf of the impurity will remain no matter how many stages are used.
2) Without using Mathematica, find the first three terms of the Maclaurin series for the following functions.
(a) $x \sqrt{1+x}$
(b) $\frac{1}{1+x+x^{2}}$
3) Without using Mathematica, find the first three terms of the Taylor series for the following functions about the given points.
(a) $f(x)=\sin (x), \quad x_{0}=\frac{\pi}{2}$
(b) $f(x)=e^{x}, \quad x_{0}=3$
(c) $f(x)=\frac{1}{x}, \quad x_{0}=1$
4) This is an exercise using Mathematica to build power series. Some of the functions you will most likely need are Series[...], Normal[...], Plot[...], FindRoot[...], Expand[...]. Use Mathematica help to find out how to use them, and become comfortable with them, trying them on your own examples.

Consider the function $e^{-x^{2}}\left(1+e^{5 x-5}\right)$
(a) Locate the local minimum that lies between -1 and 4 .
(b) Develop a power series expansion of the function about that point in the form

$$
c_{0}+c_{1} x+c_{2} x^{2}+\cdots
$$

(c) Use Mathematica to plot the function and your series superimposed on the same graph.
5) Consider the function $\frac{1}{1+x^{2}}$
(a) Without using Mathematica, develop a power series expansion of the function about the origin.
(b) For what range of x is your series guaranteed to converge?
(c) Now check your answer with Mathematica.
6) Without using Mathematica, find the sum of the following series. I don't want a numerical answer obtained by summing a bunch of terms and guessing how it converges. In other words, don't just give me a number. Show how to find the sum.
(a) $1+\frac{1}{4}-\frac{1}{16}-\frac{1}{64}+\frac{1}{256}+\frac{1}{1024}--++\cdots$
(b) $\frac{1}{1 \times 3}+\frac{1}{2 \times 4}+\frac{1}{3 \times 5}+\frac{1}{4 \times 6}+\cdots$

