Homework Set 5

Just as a reminder, on all homeworks this semester, please show your work and explain your reasoning. I will grade for clarity of explanation as much as I do for mere "correctness of final answer"!

Problems to work but not turn in (I've given the answers, but not solutions, to each of them).

1) Given $z=y^{2}-2 x^{2}$, find $\left(\frac{\partial z}{\partial x}\right)_{r},\left(\frac{\partial z}{\partial \theta}\right)_{x}, \frac{\partial^{2} z}{\partial x \partial \theta}$.

Answer: $\left(\frac{\partial z}{\partial x}\right)_{r}=-6 x, \quad\left(\frac{\partial z}{\partial \theta}\right)_{x}=2 x^{2} \tan \theta \sec ^{2} \theta, \quad \frac{\partial^{2} z}{\partial x \partial \theta}=4 x \tan \theta \sec ^{2} \theta$
2) Given $z=x y$ and $\left\{\begin{array}{l}2 x^{3}+2 y^{3}=3 t^{2} \\ 3 x^{2}+3 y^{2}=6 t\end{array}\right.$, find $\frac{d z}{d t}$.

Answer: $\frac{d z}{d t}=1+\frac{t(2-x-y)}{z}$
3) Find by the Lagrange multiplier method the largest value of the product of three positive numbers if their sum is 1 .

Answer: $\quad P=\frac{1}{27}$
4) Find the hottest and coldest points on a bar of length 5 if $T=4 x-x^{2}$, where x is the distance measured from the left end.

Answer: $T(x=2)=4, \quad T(x=5)=-5$

Problems to turn in.

1) Given $z=r^{2}-x^{2}$, find $\left(\frac{\partial z}{\partial r}\right)_{\theta},\left(\frac{\partial z}{\partial \theta}\right)_{r}, \frac{\partial^{2} z}{\partial r \partial \theta},\left(\frac{\partial z}{\partial x}\right)_{y}$.
2) If $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ by implicit differentiation.
3) Given $z=r^{2}+s^{2}+r s t, r^{4}+s^{4}+t^{4}=2 r^{2} s^{2} t^{2}+10$, find $\left(\frac{\partial z}{\partial r}\right)_{t}$ when $r=2, s=t=1$.
4) Find the shortest distance from the origin to the surface $x=y z+10$.
5) Find the shortest distance from the origin to the line of intersection of the planes

$$
\begin{aligned}
& 2 x-3 y+z=5 \\
& 3 x-y-2 z=11
\end{aligned}
$$

using Lagrange multipliers.
6) Find the hottest and coldest points of the region $y^{2} \leq x<5$ if $T=x^{2}-y^{2}-3 x$.

