Velocity and Acceleration in Polar Coordinates

I: Getting Oriented

A particle moves in a plane. We could describe its motion in two different ways:
CARTESIAN: I tell you $x(t)$ and $y(t)$.
POLAR: I tell you $r(t)$ and $\phi(t)$. (Here $r(t)=|\vec{r}(t)|$; it's the "position as measured by its straightline distance from the origin".)
(a) Draw a picture showing the location of the point at some arbitrary time, labeling x, y, r, and ϕ, and also showing the unit vectors $\hat{x}, \hat{y}, \hat{r}$, and $\hat{\phi}$, all at this one time.
(b) Using this picture, determine the formula for $\hat{r}(t)$ in terms of the Cartesian unit vectors. Your answer should contain $\phi(t)$.
(c) Write down the analogous expression for $\hat{\phi}(t)$.
(d) I claim the position vector in Cartesian coordinates is $\vec{r}(t)=x(t) \hat{x}+y(t) \hat{y}$. Do you agree? Is this consistent with your picture above?
(e) I claim the position vector in polar coordinates is just $\vec{r}(t)=r(t) \hat{r}$. Again, do you agree? Why isn't there a $\phi(t) \hat{\phi}$ term?

II: Getting Kinetic

(a) Now let's find the velocity, $\vec{v}(t)=d \vec{r}(t) / d t$.

In Cartesian coordinates, it's just $\vec{v}(t)=\dot{x}(t) \hat{x}+\dot{y}(t) \hat{y}$. Explain why, in polar coordinates, the velocity can be written as $d \vec{r}(t) / d t=r(t) d \hat{r} / d t+\dot{r}(t) \hat{r}$.
(b) It appears we need to figure out what $d \hat{r} / d t$ is. Use the formula you determined in question 1 b to get started - first in terms of \hat{x} and \hat{y}, then converting to pure polar.
(c) Write down an expression for $\vec{v}(t)$ in polar coordinates.
(d) Finally, determine the acceleration $\vec{a}(t)=d \vec{v}(t) / d t$. In Cartesian coordinates, it's just $\vec{v}(t)=\dot{x}(t) \hat{x}+\dot{y}(t) \hat{y}$. Work it out in polar coordinates.

