Vector Methods

Why be familiar with vector methods?

- <u>Coordinate transformations</u>
- Matrices and their use in transformations
- <u>Vector Addition & Subtraction</u> $\vec{A} + \vec{B}, \vec{A} \vec{B}$
- <u>Vector Multiplication</u>
 - 1) w/ scalar $s\vec{A}$
 - 2) scalar product (inner product)
 - 3) vector product
 - 4) outer product

 $s\vec{A}$ $\vec{A} \cdot \vec{B} = A_i B_i$ $\vec{A} \times \vec{B} = \varepsilon_{ijk} A_j B_k$ $A_i B_j$

- <u>Vector Calculus</u>

1)	Scalar derivative	$\frac{d\vec{A}}{ds}$
2)	Gradient	$ec{ abla}\phi$
3)	Divergence	$ec{ abla}\cdotec{A}$
4)	Curl	$\vec{ abla} imes \vec{A}$
5)	Laplacian	$ abla^2 \phi$
6)	Scalar Integral	$\int \vec{A} dv$
7)	Line Integral Surface Integral	$\int \vec{A} \cdot d\vec{s} \\ \int \vec{A} \cdot \hat{n} da$
8)	Gauss' theorem Stokes' theorem	$\int \vec{A} \cdot \hat{n} da = \int \left(\vec{\nabla} \cdot \vec{A} \right) dv$ $\int \vec{A} \cdot d\vec{s} = \int \left(\vec{\nabla} \times \vec{A} \right) \cdot \hat{n} da$

Use of Vectors (Tensors) and Vector methods allows:

- describing the problem without explicit reference to a particular coordinate system.
- "Ease" of transforming explicit results from one coordinate system to another.
- Compact, concise way of expressing complicated results.

My Notation

Arbitrary scalar quantity:

Arbitrary vector quantity:

A vector component:

A unit vector:

A unit vector component:

Matrix:

Matrix components:

S

 \vec{A}, \vec{B}

 $\begin{array}{l} A_i, A_j \mbox{ (arbitrary)} \\ A_1, A_3 \mbox{ (more explicit)} \\ A_x, A_\theta \mbox{ (very explicit)} \end{array}$

ê

 $\hat{e}_i, \hat{e}_k \text{ (arbitrary)}$ $\hat{e}_1, \hat{e}_2 \text{ (more explicit)}$ $\hat{e}_y, \hat{e}_\theta \text{ (very explicit)}$

\overline{A}

 A_{ij}, A_{ik} (arbitrary) A_{13}, A_{32} (more explicit) $A_{xx}, A_{r\theta}$ (very explicit)

Summations

$$\sum_{j=1}^{3} \lambda_{ij} A_j = \lambda_{i1} A_1 + \lambda_{i2} A_2 + \lambda_{i3} A_3$$

We will write this as: $\lambda_{ij}A_j$ (implicit sum for doubled indices)

Exception: Matrix elements, λ_{ij}

$$\lambda_{ii} = \lambda_{11} \text{ or } \lambda_{22} \text{ or } \lambda_{33}$$
$$\neq \sum_{i=1}^{3} \lambda_{ii} = \lambda_{11} + \lambda_{22} + \lambda_{33}$$