Vector Methods

Why be familiar with vector methods?

- Coordinate transformations

- Matrices and their use in transformations
$-\quad$ Vector Addition \& Subtraction $\quad \vec{A}+\vec{B}, \vec{A}-\vec{B}$
- Vector Multiplication

1) $\mathrm{w} / \mathrm{scalar} \quad s \vec{A}$
2) scalar product (inner product) $\vec{A} \cdot \vec{B}=A_{i} B_{i}$
3) vector product
$\vec{A} \times \vec{B}=\varepsilon_{i j k} A_{j} B_{k}$
4) outer product $A_{i} B_{j}$

- Vector Calculus

1) Scalar derivative $\frac{d \vec{A}}{d s}$
2) Gradient
3) Divergence
4) Curl
5) Laplacian
6) Scalar Integral
7) Line Integral Surface Integral
8) Gauss' theorem Stokes' theorem

Use of Vectors (Tensors) and Vector methods allows:

- describing the problem without explicit reference to a particular coordinate system.
- "Ease" of transforming explicit results from one coordinate system to another.
- Compact, concise way of expressing complicated results.

Arbitrary scalar quantity:
Arbitrary vector quantity:
A vector component:

A unit vector:
A unit vector component:

Matrix:
Matrix components:
\vec{A}, \vec{B}
A_{i}, A_{j} (arbitrary)
A_{1}, A_{3} (more explicit)
A_{x}, A_{θ} (very explicit)
\hat{e}
\hat{e}_{i}, \hat{e}_{k} (arbitrary)
\hat{e}_{1}, \hat{e}_{2} (more explicit)
$\hat{e}_{y}, \hat{e}_{\theta}$ (very explicit)
\bar{A}
$A_{i j}, A_{i k}$ (arbitrary)
A_{13}, A_{32} (more explicit)
$A_{x x}, A_{r \theta}$ (very explicit)

Summations

$\sum_{j=1}^{3} \lambda_{i j} A_{j}=\lambda_{i 1} A_{1}+\lambda_{i 2} A_{2}+\lambda_{i 3} A_{3}$
We will write this as: $\quad \lambda_{i j} A_{j} \quad$ (implicit sum for doubled indices)

Exception: Matrix elements, $\lambda_{i j}$

$$
\begin{aligned}
\lambda_{i i} & =\lambda_{11} \text { or } \lambda_{22} \text { or } \lambda_{33} \\
& \neq \sum_{i=1}^{3} \lambda_{i i}=\lambda_{11}+\lambda_{22}+\lambda_{33}
\end{aligned}
$$

