
Vector Methods 
 

Why be familiar with vector methods? 
 

– Coordinate transformations 
 
 
 

– Matrices and their use in transformations 
 
 
 

– Vector Addition & Subtraction ,  
 
 
 

– Vector Multiplication 
 

1) w/ scalar  
 

2) scalar product (inner product)  
 

3) vector product  
 

4) outer product  
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– Vector Calculus 
 

1) Scalar derivative  
 

2) Gradient  
 

3) Divergence  
 

4) Curl  
 

5) Laplacian  
 
 
 

6) Scalar Integral  
 

7) Line Integral  
 Surface Integral  

 

8) Gauss’ theorem  
 Stokes’ theorem  
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Use of Vectors (Tensors) and Vector methods allows: 
 
 
 

– describing the problem without explicit reference to a particular 
coordinate system. 

 
 
 

– “Ease” of transforming explicit results from one coordinate 
system to another. 

 
 
 

– Compact, concise way of expressing complicated results. 



My Notation 
 

Arbitrary scalar quantity: s 
 
 

Arbitrary vector quantity: ,  
 
 

A vector component: ,  (arbitrary) 
 ,  (more explicit) 
 ,  (very explicit) 
 
 

A unit vector:  
 
 

A unit vector component: ,  (arbitrary) 
 ,  (more explicit) 
 ,  (very explicit) 
 
 

Matrix:  
 
 

Matrix components: ,  (arbitrary) 
 ,  (more explicit) 
 ,  (very explicit) 
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Summations 
 
 

 

 
 

We will write this as:  (implicit sum for doubled indices) 
 
 
 
 
 
 

Exception: Matrix elements,  
 
 

 or  or  
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