Linear, $2^{\text {nd }}$ order, non-homogeneous differential equation with constant coefficients.

$a \frac{d^{2} y(x)}{d x^{2}}+b \frac{d y(x)}{d x}+c y(x)=f(x)$

The solutions are given by:

$$
y(x)=y_{p}(x)+y_{c}(x)
$$

where $y_{c}(x) \equiv$ complementary solution to the homogeneous equation.

To find $y_{p}(x)$, we guess at a solution. The guess we make will depend on $f(x)$.

$f(x)$	$y_{p}(x)$
$P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$	$x^{s}\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{1} x+A_{0}\right)$
$\begin{gathered} P_{n}(x) e^{\alpha x} \\ (\alpha=\text { real or complex }) \end{gathered}$	$x^{s}\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{1} x+A_{0}\right) e^{\alpha x}$
$\begin{gathered} P_{n}(x) e^{\alpha x} \cos (k x) \\ \text { or } \\ P_{n}(x) e^{\alpha x} \sin (k x) \end{gathered}$	$x^{s}\left[\left(A_{n} x^{n}+\cdots+A_{0}\right) e^{\alpha x} \cos (k x)+\left(B_{n} x^{n}+\cdots+B_{0}\right) e^{\alpha x} \sin (k x)\right]$

Here s is the smallest nonnegative integer $(s=0,1,2)$ which will insure that no term in $y_{p}(x)$ is a solution of the corresponding homogeneous equation.

