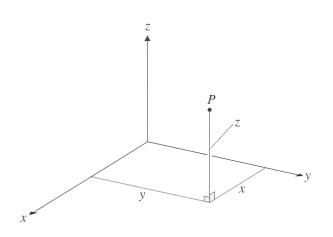
Properties of Coordinate Systems

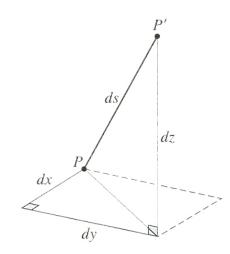
Cartesian Coordinates



Position vector:

 $\mathbf{r} = x\,\hat{\mathbf{x}} + y\,\hat{\mathbf{y}} + z\,\hat{\mathbf{z}}$

For Two Neighboring Points P and P':



Displacement between two neighboring points:

 $d\mathbf{s} = d\mathbf{r} = dx\,\hat{\mathbf{x}} + dy\,\hat{\mathbf{y}} + dz\,\hat{\mathbf{z}}$

Distance between two neighboring points (*Found using the Pythagorean Theorem*): $ds = |d\mathbf{r}| = \sqrt{dx^2 + dy^2 + dz^2}$ **Primary Curve** – the curve obtained when one coordinate variable is allowed to vary while the other two are held fixed.

Primary Length Element – infinitesimal length along the primary curve

Primary Surface – the surface obtained when the coordinate determining the primary length element is held fixed and the other two are allowed to vary.

Primary Element	Primary Curve	Primary Surface	Primary Volume	
1 st ∶ x	Straight Line (<i>x-axis</i>) (y and z fixed, x varies)	<i>yz</i> -plane (x fixed , y and z varies)		
2 nd : y	Straight Line (<i>y-axis</i>) (x and z fixed, y varies)	<i>xz</i> -plane (y fixed , x and z varies)	Solid Cube	
3 rd ∶ z	Straight Line (<i>z-axis</i>) (x and y fixed, z varies)	<i>xy</i> -plane (z fixed , x and y varies)		

Primary Length Elements	Primary Area Elements	Primary Volume Elements
1 st : dx ($\hat{\mathbf{x}}$)	$dy dz$ ($\hat{\mathbf{x}}$)	
2^{nd} : dy (\hat{y})	$dx dz$ ($\hat{\mathbf{y}}$)	dx dy dz
3^{rd} : dz (\hat{z})	$dx dy$ (\hat{z})	

Primary length element vectors are in the direction of their corresponding primary curve.

Primary area element vectors are in the same direction as the primary length element vector (*i.e.* \perp *to their corresponding primary surface*).

Primary volume elements are scalars not vectors and do not have an associated direction.

Conversions to Cartesian Coordinates

Spherical \rightarrow Cartesian $x = r \sin \theta \cos \varphi$ $y = r \sin \theta \sin \varphi$ $z = r \cos \theta$

Cylindrical \rightarrow Cartesian

$$x = \rho \cos \varphi$$
$$y = \rho \sin \varphi$$
$$z_{Cart} = z_{cyl}$$

Conversions to Cartesian Unit Vectors

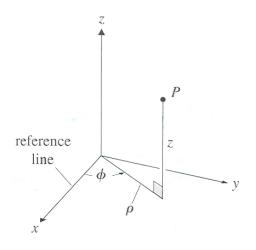
Spherical \rightarrow Cartesian

 $\hat{\mathbf{r}} = \sin\theta\cos\varphi\,\hat{\mathbf{x}} + \sin\theta\sin\varphi\,\hat{\mathbf{y}} + \cos\theta\,\hat{\mathbf{z}}$ $\hat{\mathbf{\theta}} = \cos\theta\cos\varphi\,\hat{\mathbf{x}} + \cos\theta\sin\varphi\,\hat{\mathbf{y}} - \sin\theta\,\hat{\mathbf{z}}$ $\hat{\mathbf{\phi}} = -\sin\varphi\,\hat{\mathbf{x}} + \cos\varphi\,\hat{\mathbf{y}}$

Cylindrical \rightarrow Cartesian

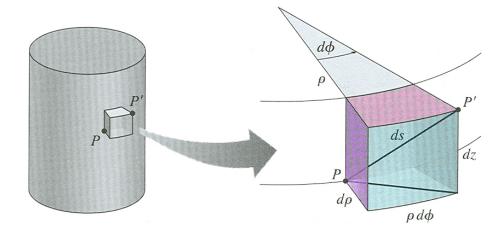
$$\hat{\boldsymbol{\rho}} = \cos \varphi \, \hat{\mathbf{x}} + \sin \varphi \, \hat{\mathbf{y}}$$
$$\hat{\boldsymbol{\varphi}} = -\sin \varphi \, \hat{\mathbf{x}} + \cos \varphi \, \hat{\mathbf{y}}$$
$$\hat{\mathbf{z}}_{cyl} = \hat{\mathbf{z}}_{Cart}$$

Cylindrical Coordinates



Position vector: $\mathbf{r} = \rho \,\hat{\mathbf{\rho}} + z \,\hat{\mathbf{z}}$

For Two Neighboring Points P and P':



Displacement between two neighboring points: $d\mathbf{s} = d\mathbf{r} = d\rho\,\hat{\mathbf{p}} + \rho d\varphi\,\hat{\mathbf{q}} + dz\,\hat{\mathbf{z}}$

Distance between two neighboring points (Found using the Pythagorean Theorem):

$$ds = |d\mathbf{r}| = \sqrt{d\rho^2 + \rho^2 d\varphi^2 + dz^2}$$

Primary Curve	Primary Surface	Primary Volume	
1 st : Rays \perp to the <i>z</i> -axis (φ and z fixed, ρ varies)	Cylinder centered on the <i>z</i> -axis $(\rho \text{ fixed }, \phi \text{ and } z \text{ varies})$		
2^{nd} : Circle centered on the <i>z</i> -axis (ρ and z fixed, ϕ varies)	Half-plane from <i>z</i> -axis (φ fixed , ρ and z varies)	Solid Cylinder	
3rd : Straight line (<i>z</i> -axis) (ρ and φ fixed, z varies)	Plane \perp to the <i>z</i> -axis (z fixed , ρ and ϕ varies)		

Primary	v Lengtł	n Elements	Primary Area	a Elem	ients	Primary Volume Elements
1 st :	dρ	(ρ)	$ ho d \varphi d z$	(ĝ)	(teal surface)	
2 nd :	$ ho d \varphi$	(φ)	dp dz	(φ)	(purple surface)	ρ dρ dφ dz
3 rd :	dz	($ ho$ d $ ho$ d ϕ	((pink surface)	

Conversions to Cylindrical Coordinates

Cartesian \rightarrow Cylindrical

$$\rho = \sqrt{x^2 + y^2}$$
$$\tan \varphi = \frac{y}{x} \quad \Rightarrow \quad \varphi = \tan^{-1}\left(\frac{y}{x}\right)$$
$$z_{cyl} = z_{Cart}$$

Spherical \rightarrow Cylindrical

$$\rho = r \sin \theta$$
$$\varphi_{cyl} = \varphi_{sph}$$
$$z = r \cos \theta$$

Conversions to Cylindrical Unit Vectors

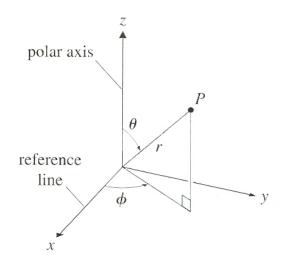
Cartesian \rightarrow Cylindrical

$$\hat{\mathbf{x}} = \cos \varphi \, \hat{\mathbf{\rho}} - \sin \varphi \, \hat{\mathbf{\varphi}}$$
$$\hat{\mathbf{y}} = \sin \varphi \, \hat{\mathbf{\rho}} + \cos \varphi \, \hat{\mathbf{\varphi}}$$
$$\hat{\mathbf{z}} = \hat{\mathbf{z}}$$

Spherical \rightarrow Cylindrical

$$\hat{\mathbf{r}} = \sin\theta\,\hat{\mathbf{\rho}} + \cos\theta\,\hat{\mathbf{z}}$$
$$\hat{\mathbf{\theta}} = \cos\theta\,\hat{\mathbf{\rho}} - \sin\theta\,\hat{\mathbf{z}}$$
$$\hat{\mathbf{\phi}}_{sph} = \hat{\mathbf{\phi}}_{cyl}$$

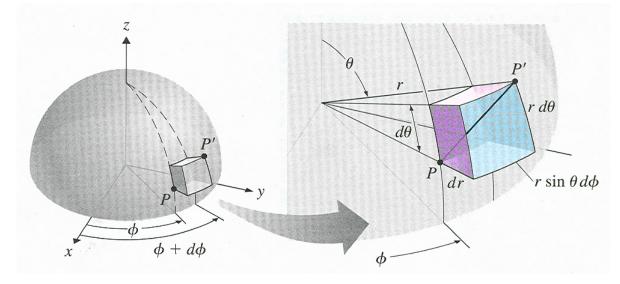
Spherical Coordinates



Position vector:

 $\mathbf{r} = r\,\hat{\mathbf{r}}$

For Two Neighboring Points P and P':



Displacement between two neighboring points:

 $d\mathbf{s} = d\mathbf{r} = dr\,\hat{\mathbf{r}} + rd\theta\,\hat{\mathbf{\theta}} + r\sin\theta d\varphi\,\hat{\mathbf{\varphi}}$

Distance between two neighboring points (*Found using the Pythagorean Theorem***):** $ds = |d\mathbf{r}| = \sqrt{dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2}$

Primary Element	Primary Curve	Primary Surface	Primary Volume	
1₅t : r	Rays from the origin $(\theta \text{ and } \phi \text{ fixed, r varies})$	Sphere (r fixed , θ and ϕ varies)		
$2^{nd}: \theta$	Half circle (r and φ fixed, θ varies)	Cone of half angle θ (θ fixed , r and ϕ varies)	Solid Sphere	
3rd : φ	Circle centered on polar axis (r and θ fixed, ϕ varies)	Half-plane from <i>z</i> -axis $(\phi \text{ fixed }, \text{ r and } \theta \text{ varies})$		

Primary Length Elements		Primary Area Elements			Primary Volume Elements	
1 st :	dr	(r)	$r^2 sin heta d heta d \phi$	(r)	(teal)	
2 nd :	r dθ	(θ̂)	$r \sin heta dr d \phi$	(θ)	(pink)	$r^2 sin heta dr d heta d\phi$
3 rd :	$r \sin heta d \varphi$	(φ)	r dr dθ	(φ)	(purple)	

Note: The $r \sin\theta$ term is the distance from the polar axis to the projection of point P into the *xy*-plane.

Conversions to Spherical Coordinates

Cartesian \rightarrow Spherical $r = \sqrt{x^2 + y^2 + z^2}$ $=\sqrt{x} + y + z$ $\ln \theta = \frac{\sqrt{x^2 + y^2}}{z}$ $\theta = \tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right)$ $\theta = \cos^{-1}\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$ $\tan\theta = \frac{\sqrt{x^2 + y^2}}{z}$ $\tan \varphi = \frac{y}{x}$ Cylindrical \rightarrow Spherical $r = \sqrt{\rho^2 + z^2}$ $\theta = \tan^{-1}\left(\frac{\rho}{\rho}\right)$ $\tan\theta = \frac{\rho}{z}$ $n\theta = \frac{\mu}{z}$ or $\cos\theta = \frac{z}{\sqrt{\rho^2 + z^2}}$ → θ

$$\varphi_{sph} = \varphi_{cyl}$$

$$\theta = \cos^{-1} \left(\frac{z}{\sqrt{\rho^2 + z^2}} \right)$$

Cartesian
$$\rightarrow$$
 Spherical
 $\hat{\mathbf{x}} = \sin\theta\cos\varphi\,\hat{\mathbf{r}} + \cos\theta\cos\varphi\,\hat{\mathbf{\theta}} - \sin\varphi\,\hat{\mathbf{\phi}}$
 $\hat{\mathbf{y}} = \sin\theta\sin\varphi\,\hat{\mathbf{r}} + \cos\theta\sin\varphi\,\hat{\mathbf{\theta}} + \cos\theta\,\hat{\mathbf{\phi}}$
 $\hat{\mathbf{z}} = \cos\theta\,\hat{\mathbf{r}} - \sin\theta\,\hat{\mathbf{\theta}}$

Cylindrical \rightarrow Spherical

$$\hat{\mathbf{\rho}} = \sin\theta \,\hat{\mathbf{r}} + \cos\theta \,\hat{\mathbf{\theta}}$$
$$\hat{\mathbf{\phi}}_{cyl} = \hat{\mathbf{\phi}}_{sph}$$
$$\hat{\mathbf{z}} = \cos\theta \,\hat{\mathbf{r}} - \sin\theta \,\hat{\mathbf{\theta}}$$