## Properties of Coordinate Systems

## Cartesian Coordinates



Position vector:

$$
\mathbf{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}
$$

For Two Neighboring Points P and P':


Displacement between two neighboring points:

$$
d \mathbf{s}=d \mathbf{r}=d x \hat{\mathbf{x}}+d y \hat{\mathbf{y}}+d z \hat{\mathbf{z}}
$$

Distance between two neighboring points (Found using the Pythagorean Theorem):

$$
d s=|d \mathbf{r}|=\sqrt{d x^{2}+d y^{2}+d z^{2}}
$$

Primary Curve - the curve obtained when one coordinate variable is allowed to vary while the other two are held fixed.

Primary Length Element - infinitesimal length along the primary curve
Primary Surface - the surface obtained when the coordinate determining the primary length element is held fixed and the other two are allowed to vary.

| Primary Element | Primary Curve | Primary Surface | Primary Volume |
| :---: | :---: | :---: | :---: |
| $1^{\text {st }}$ : x | Straight Line ( $x$-axis) <br> ( y and z fixed, x varies) | $y z$-plane <br> ( x fixed, y and z varies) |  |
| $2^{\text {nd }}$ : y | Straight Line ( $y$-axis) ( x and z fixed, y varies) | $x z$-plane <br> (y fixed, x and z varies) | Solid Cube |
| $3^{\text {rd }}$ : z | Straight Line ( $z$-axis) ( x and y fixed, z varies) | $x y$-plane <br> ( z fixed, x and y varies) |  |


| Primary Length Elements | Primary Area Elements | Primary Volume Elements |  |  |
| :---: | :---: | :---: | :--- | :--- |
| $1^{\text {st: }}:$ | $d x$ | $(\hat{\mathbf{x}})$ | $d y d z$ | $(\hat{\mathbf{x}})$ |
| $2^{\text {nd }}:$ | $d y$ | $(\hat{\mathbf{y}})$ | $d x d z$ | $(\hat{\mathbf{y}})$ |
| $3^{\text {rd }}:$ | $d z$ | $(\hat{\mathbf{z}})$ | $d x d y$ | $(\hat{\mathbf{z}})$ |

Primary length element vectors are in the direction of their corresponding primary curve.

Primary area element vectors are in the same direction as the primary length element vector
(i.e. $\perp$ to their corresponding primary surface).

Primary volume elements are scalars not vectors and do not have an associated direction.

## Conversions to Cartesian Coordinates

Spherical $\rightarrow$ Cartesian

$$
\begin{aligned}
& x=r \sin \theta \cos \varphi \\
& y=r \sin \theta \sin \varphi \\
& z=r \cos \theta
\end{aligned}
$$

Cylindrical $\rightarrow$ Cartesian

$$
\begin{aligned}
& x=\rho \cos \varphi \\
& y=\rho \sin \varphi \\
& z_{\text {Cart }}=z_{c y l}
\end{aligned}
$$

## Conversions to Cartesian Unit Vectors

$$
\begin{aligned}
& \text { Spherical } \rightarrow \text { Cartesian } \\
& \qquad \begin{aligned}
\hat{\mathbf{r}} & =\sin \theta \cos \varphi \hat{\mathbf{x}}+\sin \theta \sin \varphi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}} \\
\hat{\boldsymbol{\theta}} & =\cos \theta \cos \varphi \hat{\mathbf{x}}+\cos \theta \sin \varphi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}} \\
\hat{\boldsymbol{\varphi}} & =-\sin \varphi \hat{\mathbf{x}}+\cos \varphi \hat{\mathbf{y}}
\end{aligned}
\end{aligned}
$$

Cylindrical $\rightarrow$ Cartesian

$$
\begin{aligned}
& \hat{\boldsymbol{\rho}}=\cos \varphi \hat{\mathbf{x}}+\sin \varphi \hat{\mathbf{y}} \\
& \hat{\boldsymbol{\varphi}}=-\sin \varphi \hat{\mathbf{x}}+\cos \varphi \hat{\mathbf{y}} \\
& \hat{\mathbf{z}}_{c y l}=\hat{\mathbf{z}}_{\text {Cart }}
\end{aligned}
$$

## Cylindrical Coordinates



Position vector:

$$
\mathbf{r}=\rho \hat{\boldsymbol{\rho}}+z \hat{\mathbf{z}}
$$

## For Two Neighboring Points P and P':



Displacement between two neighboring points:

$$
d \mathbf{s}=d \mathbf{r}=d \rho \hat{\boldsymbol{\rho}}+\rho d \varphi \hat{\boldsymbol{\varphi}}+d z \hat{\mathbf{z}}
$$

Distance between two neighboring points (Found using the Pythagorean Theorem):

$$
d s=|d \mathbf{r}|=\sqrt{d \rho^{2}+\rho^{2} d \varphi^{2}+d z^{2}}
$$

Primary Curve
Primary Surface
Primary Volume
$1^{\text {st }}:$ Rays $\perp$ to the $z$-axis
( $\varphi$ and z fixed, $\rho$ varies)
$2^{\text {nd }}:$ Circle centered on the $z$-axis
( $\rho$ and z fixed, $\varphi$ varies)
$3^{\text {rd }}$ : Straight line ( $z$-axis)
( $\rho$ and $\varphi$ fixed, z varies)

Cylinder centered on the $z$-axis
( $\rho$ fixed, $\varphi$ and $z$ varies)
Half-plane from $z$-axis
( $\varphi$ fixed , $\rho$ and $z$ varies) Solid Cylinder
Plane $\perp$ to the $z$-axis
(z fixed , $\rho$ and $\varphi$ varies)

Primary Length Elements
Primary Area Elements
Primary Volume Elements
$1^{\text {st }} d \rho \quad(\hat{\boldsymbol{\rho}}) \quad \rho d \varphi d z \quad(\hat{\boldsymbol{\rho}}) \quad$ (teal surface)
$2^{\text {nd }}: \rho d \varphi \quad(\hat{\varphi})$
$d \rho d z$
( $\hat{\varphi}$ ) (purple surface)
$\rho d \rho d \varphi d z$
$3^{\text {rd }} d z$
( z )
$\rho d \rho d \varphi$ ( $\hat{\mathbf{z}}$ ) (pink surface)

## Conversions to Cylindrical Coordinates

Cartesian $\rightarrow$ Cylindrical

$$
\begin{aligned}
& \rho=\sqrt{x^{2}+y^{2}} \\
& \tan \varphi=\frac{y}{x} \quad \rightarrow \quad \varphi=\tan ^{-1}\left(\frac{y}{x}\right) \\
& z_{\text {cyl }}=z_{\text {Cart }}
\end{aligned}
$$

Spherical $\rightarrow$ Cylindrical

$$
\begin{aligned}
& \rho=r \sin \theta \\
& \varphi_{c y l}=\varphi_{s p h} \\
& z=r \cos \theta
\end{aligned}
$$

## Conversions to Cylindrical Unit Vectors

Cartesian $\rightarrow$ Cylindrical

$$
\begin{aligned}
& \hat{\mathbf{x}}=\cos \varphi \hat{\boldsymbol{\rho}}-\sin \varphi \hat{\boldsymbol{\varphi}} \\
& \hat{\mathbf{y}}=\sin \varphi \hat{\boldsymbol{\rho}}+\cos \varphi \hat{\boldsymbol{\varphi}} \\
& \hat{\mathbf{z}}=\hat{\mathbf{z}}
\end{aligned}
$$

Spherical $\rightarrow$ Cylindrical

$$
\begin{aligned}
& \hat{\mathbf{r}}=\sin \theta \hat{\boldsymbol{\rho}}+\cos \theta \hat{\mathbf{z}} \\
& \hat{\boldsymbol{\theta}}=\cos \theta \hat{\boldsymbol{\rho}}-\sin \theta \hat{\mathbf{z}} \\
& \hat{\boldsymbol{\varphi}}_{\text {sph }}=\hat{\boldsymbol{\varphi}}_{\text {cyl }}
\end{aligned}
$$

## Spherical Coordinates



Position vector:

$$
\mathbf{r}=r \hat{\mathbf{r}}
$$

## For Two Neighboring Points P and P':



Displacement between two neighboring points:

$$
d \mathbf{s}=d \mathbf{r}=d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}+r \sin \theta d \varphi \hat{\boldsymbol{\varphi}}
$$

Distance between two neighboring points (Found using the Pythagorean Theorem):

$$
d s=|d \mathbf{r}|=\sqrt{d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}}
$$



Note: The $r \sin \theta$ term is the distance from the polar axis to the projection of point P into the $x y$-plane.

## Conversions to Spherical Coordinates

Cartesian $\rightarrow$ Spherical

$$
\begin{array}{lll}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\tan \theta=\frac{\sqrt{x^{2}+y^{2}}}{z} & & \theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\quad \text { or } \cos \theta=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} & & \theta=\cos ^{-1}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\
\tan \varphi=\frac{y}{x} &
\end{array}
$$

Cylindrical $\rightarrow$ Spherical

$$
\begin{aligned}
& r=\sqrt{\rho^{2}+z^{2}} \\
& \tan \theta=\frac{\rho}{z} \\
& \quad \text { or } \cos \theta=\frac{z}{\sqrt{\rho^{2}+z^{2}}}
\end{aligned} \quad \rightarrow \quad \theta=\tan ^{-1}\left(\frac{\rho}{z}\right)
$$

## Conversions to Spherical Unit Vectors

Cartesian $\rightarrow$ Spherical

$$
\begin{aligned}
& \hat{\mathbf{x}}=\sin \theta \cos \varphi \hat{\mathbf{r}}+\cos \theta \cos \varphi \hat{\boldsymbol{\theta}}-\sin \varphi \hat{\boldsymbol{\varphi}} \\
& \hat{\mathbf{y}}=\sin \theta \sin \varphi \hat{\mathbf{r}}+\cos \theta \sin \varphi \hat{\boldsymbol{\theta}}+\cos \theta \hat{\boldsymbol{\varphi}} \\
& \hat{\mathbf{z}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\boldsymbol{\theta}}
\end{aligned}
$$

Cylindrical $\rightarrow$ Spherical

$$
\begin{aligned}
& \hat{\boldsymbol{\rho}}=\sin \theta \hat{\mathbf{r}}+\cos \theta \hat{\boldsymbol{\theta}} \\
& \hat{\boldsymbol{\varphi}}_{\text {cyl }}=\hat{\boldsymbol{\varphi}}_{\text {sph }} \\
& \hat{\mathbf{z}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\boldsymbol{\theta}}
\end{aligned}
$$

