Linear, $2^{\text {nd }}$ order, non-homogeneous differential equation with constant coefficients.
$a \frac{d^{2} y(x)}{d x^{2}}+b \frac{d y(x)}{d x}+c y(x)=f(x)$

The solutions are given by:

$$
y(x)=y_{p}(x)+y_{c}(x)
$$

where $y_{c}(x) \equiv$ complementary solution to the homogeneous equation.

To find $y_{p}(x)$, we guess at a solution. The guess we make will depend on $f(x)$.

$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{y}_{p}(\boldsymbol{x})$
$P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$	
$P_{n}(x) e^{\alpha x}$ $(\alpha=$ real or complex $)$	
$P_{n}\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{1} x+A_{0}\right)$	
or $\cos (k x)$	
$P_{n}(x) e^{\alpha x} \sin (k x)$	
	$x^{s}\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{1} x+A_{0}\right) e^{\alpha x}$

Here s is the smallest nonnegative integer $(s=0,1,2)$ which will insure that no term in $y_{p}(x)$ is a solution of the corresponding homogeneous equation.

