Unit 1.6

We will continue:

– collecting data by hand
– developing our spreadsheet skills (tables, graphs)

+ start looking at how objects move

→ develop precise language to describe motion
 (Unit 5: start looking at what causes objects to change motion)
Unit 1.6
General motion of an object can be quite complicated.

Ex: tossing a hammer → 3D translational motion (horiz. & vert.)

→ rotational motion

We will start simply and add complexity as we go along

⇒ 1D horizontal motion of a ball

⇒ Remove/greatly reduce outside influences and interactions

Experimental design question: Why are we using a bowling ball?
Again: We are **not** measuring speed.

We are measuring:
- positions, x
- times, t

We are calculating:
- distance, $\Delta x = x_2 - x_1$
- time interval, $\Delta t = t_2 - t_1$
- speed, v
Unit 1.6 (continued)

First motion definitions:

Distance, \(\Delta x \equiv x_2 - x_1 \)

Average speed, \(< v > \equiv \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \)

- \(x_1 = \) position of object at instant of time \(t_1 \)
- \(x_2 = \) position of object at instant of time \(t_2 \)

(This is not quite the same as speed = distance/time, which is not correct)

Example, \(< v > = \frac{x_2 - x_1}{t_2 - t_1} = \frac{8.0 \text{ m} - 0.0 \text{ m}}{4.0 \text{ s} - 0.0 \text{ s}} = 2.0 \text{ m/s} \)
Unit 1.7
Here, we will learn to graph our data:
- by hand
- by computer (spreadsheet)

Guidelines:
- title the graph, label the axes, and include units
- use the full axes
- use scale increments of multiples of 1, 2, or 5
- do not connect the data points with lines

Appendix A walks you through how to make a graph using Excel.
- select/highlight time and position data before using Chart Wizard
Unit 1.8

Our data:

- position, \(x \), increases as time, \(t \), increases
- increases linearly
- passes through \((0 \text{ s}, 0 \text{ m})\) \(\Rightarrow\) proportional

Slope, \(m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}} = \frac{x_2 - x_1}{t_2 - t_1} \)
<table>
<thead>
<tr>
<th>$<t>$ (s)</th>
<th>x (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>0.97</td>
<td>2.0</td>
</tr>
<tr>
<td>1.95</td>
<td>4.0</td>
</tr>
<tr>
<td>2.94</td>
<td>6.0</td>
</tr>
<tr>
<td>4.03</td>
<td>8.0</td>
</tr>
<tr>
<td>5.00</td>
<td>10.0</td>
</tr>
<tr>
<td>5.96</td>
<td>12.0</td>
</tr>
<tr>
<td>6.93</td>
<td>14.0</td>
</tr>
<tr>
<td>7.92</td>
<td>16.0</td>
</tr>
<tr>
<td>8.93</td>
<td>18.0</td>
</tr>
<tr>
<td>10.03</td>
<td>20.0</td>
</tr>
<tr>
<td>11.02</td>
<td>22.0</td>
</tr>
<tr>
<td>12.06</td>
<td>24.0</td>
</tr>
<tr>
<td>12.98</td>
<td>26.0</td>
</tr>
<tr>
<td>13.86</td>
<td>28.0</td>
</tr>
<tr>
<td>14.93</td>
<td>30.0</td>
</tr>
<tr>
<td>15.82</td>
<td>32.0</td>
</tr>
</tbody>
</table>

Bowling Data