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1.4 DESCRIBING THE 3D WORLD: VECTORS

Physical phenomena take place in the 3D world around us. In order to be able
to make quantitative predictions and give detailed, quantitative explanations,
we need tools for describing precisely the positions and velocities of objects in
3D, and the changes in position and velocity due to interactions. These tools
are mathematical entities called 3D “vectors.” A symbol denoting a vector is
written with an arrow over it:

¥ is a vector
In three dimensions a vector is a triple of numbers (x,y,z). Quantities like the
position or velocity of an object can be represented as vectors:
r1 =(3.2,-9.2,66.3) m (a position vector)

Vi =(-22.3,0.4,—-19.5) m/s (a velocity vector)



Figure 1.11 Right-handed 3D coordinate
system. The xy plane is in the plane of
the page, and the z axis projects out of
the page, toward you.

Figure 1.12 A position vector
F=(4,3,2)mandits x, y, and z
components.
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Many vectors have units associated with them, such as meters or meters per
second. In this course, we will work with the following important physical
quantities that are vectors: position, velocity, rate of change of velocity
(acceleration), momentum, rate of change of momentum, force, angular
momentum, torque, electric field, magnetic field, energy flow, and momentum
flow. All of these vectors have associated physical units.

We use the notation (x,y,z) for vectors because it emphasizes the fact that
a vector is a single entity, and because it is easy to work with. This notation
appears in many calculus textbooks; you will probably encounter other ways
of expressing vectors mathematically as well.

Position Vectors

A position vector is a simple example of a physical vector quantity. We will use
a 3D Cartesian coordinate system to specify positions in space and other vector
quantities. Usually we will orient the axes of the coordinate system as shown
in Figure 1.11: +x axis to the right, +y axis upward, and +z axis coming out of
the page, toward you. This is a “right-handed” coordinate system: if you hold
the thumb, first, and second fingers of your right hand perpendicular to each
other, and align your thumb with the x axis and your first finger with the y axis,
your second finger points along the z axis. In some math textbook discussions
of 3D coordinate systems, the x axis points out, the y axis points to the right, and
the z axis points up. This is the same right-handed coordinate system, viewed
from a different “camera position.” Since we will sometimes consider motion
in a single plane, it makes sense to orient the xy plane in the plane of a vertical
page or computer display, so we will use the viewpoint in which the y axis
points up.

A position in 3D space can be considered to be a vector, called a position
vector, pointing from an origin to that location. Figure 1.12 shows a position
vector, represented by an arrow with its tail at the origin, that might represent
your final position if you started at the origin and walked 4 meters along the
x axis, then 2 meters parallel to the z axis, then climbed a ladder so you were
3 meters above the ground. Your new position relative to the origin is a vector
that can be written like this:

F=(4,3,2) m
Each of the numbers in the triple is called a “component” of the vector, and
is associated with a particular axis. Usually the components of a vector are

denoted symbolically by the subscripts x, y, and z:

= (Vx,Vy,v;) (avelocity vector)
= (ry,1y,r;) (aposition vector)
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=(x,y,z) (alternative notation for a position vector)
The components of the position vector 7= (4,3,2) m are:

ry=4m (the x component)
ry=3m (the y component)
r;=2m (the z component)

The x component of the vector v is the number v,. The z component of the
vector V] = (—22.3,0.4,—19.5) m/s is —19.5m/s. A component such as v, is not
a vector, since it is only one number.

QUESTION Can a vector be zero?
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Figure 1.13 The arrow represents the
vector b = (4,3,2) m, drawn with its tail
at location (0,0,2).

Figure 1.14 The position vector
(—3,-1,0), drawn at the origin, in the
xy plane. The components of the vector
specify the displacement from the tail to
the tip. The z axis, which is not shown,
comes out of the page, toward you.

The zero vector (0,0,0) is a legal vector, which we will sometimes write as 0.
A zero position vector describes the position of an object located at the
origin. A zero velocity vector describes the velocity of an object that is at rest
at a particular instant.

Drawing Vectors

A position vector is special in that its tail is always at the origin of a coordinate
system, but this is not the case for other vectors. It is important to note that
the x component of a vector specifies the difference between the x coordinate
of the tail of the vector and the x coordinate of the tip of the vector. It does
not give any information about the location of the tail of the vector (compare
Figures 1.12 and 1.13). By convention, arrows representing vector quantities
such as velocity are usually drawn with the tail of the arrow at the location of
the object.

In Figure 1.12 we represented your position vector relative to the origin
graphically by an arrow whose tail is at the origin and whose arrowhead is at
your position. The length of the arrow represents the distance from the origin,
and the direction of the arrow represents the direction of the vector, which
is the direction of a direct path from the initial position to the final position
(the “displacement”; by walking and climbing you “displaced” yourself from
the origin to your final position).

Since it is difficult to draw a 3D diagram on paper, when working on paper
you will usually be asked to draw vectors that all lie in a single plane. Figure 1.14
shows an arrow in the xy plane representing the vector (—3,—1,0).

Scalars

A quantity that is represented by a single number is called a scalar. A scalar
quantity does not have a direction. Examples include the mass of an object,
such as 50 kg, or the temperature, such as —20 °C. Vectors and scalars are very
different entities; a vector can never be equal to a scalar, and a scalar cannot
be added to a vector. Scalars can be positive, negative, or zero:

m = 50kg
T=-20°C

Vector Operations

Vectors are mathematical entities, and have their own mathematical
operations. Some of these operations are the same as those you already know
for scalars. Others, such as multiplication, are quite different, and division by a
vector is not legal. Here are the vector operations that we will discuss and use
in this textbook:

VECTOR OPERATIONS
Mathematical operations that are defined for vectors:

= Multiply or divide a vector by a scalar: 24, V/5

= Find the magnitude of a vector: |a|

= Find a unit vector giving direction: a

= Add one vector to another: @+ b =

= Subtract one vector from another: 4 — b

= Differentiate a vector: dr/dt

= Dot product of two vectors (result is a scalar): d e b

= Cross product of two vectors (result is a vector): @ x b



Figure 1.15 Multiplying a vector by a
scalar changes the magnitude of the vector.
Multiplying by a negative scalar reverses
the direction of the vector.

Figure 1.16 A vector representing a
displacement from the origin.

Figure 1.17 The magnitude of a vector is
the square root of the sum of the squares
of its components (3D version of the
Pythagorean theorem).
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The dot product will be introduced in Chapter 5, and the cross product in
Chapter 11.

There are certain operations that are neither legal nor meaningful for
vectors:

= A vector cannot be set equal to a scalar.

= A vector cannot be added to or subtracted from a scalar.

= A vector cannot occur in the denominator of an expression. (Although you
can’t divide by a vector, note that you can legally divide by the magnitude of
a vector, which is a scalar.)

= As with scalars, you can’t add or subtract vectors that have different units.

Multiplying a Vector by a Scalar

A vector can be multiplied (or divided) by a scalar. If a vector is multiplied by
a scalar, each of the components of the vector is multiplied by the scalar:

If 7= (x,y,2), then aF = (ax,ay,az)
If V= (vy,vy,v;), then % = <Vl’vl’&>

(6,—20,9) = (3,—10,4.5)

N =

Multiplication by a scalar “scales” a vector, keeping its direction the same but
making its magnitude larger or smaller (Figure 1.15). Multiplying by a negative
scalar reverses the direction of a vector.

(—1)(0,0,4) = (0,0,—4)

Checkpoint 3 You stand at location 7 = (2,—3,5) m. Your friend stands at
location 7/2. What is your friend’s position vector?

Magnitude

Figure 1.16 shows a vector representing a displacement of (4,3,2) m from the
origin. What is the distance from the tip of this vector to the origin? Using a
3D extension of the Pythagorean theorem for right triangles (Figure 1.17), we
find that

\/(4m)2 +(3m)2+(2m)? =+v29m =5.39m
We say that the magnitude |F| of the position vector 7 is
|7| =5.39m

The magnitude of a vector is written either with absolute-value bars around the
vector as |F|, or simply by writing the symbol for the vector without the little
arrow above it, r.

MAGNITUDE OF A VECTOR

If the vector 7' = (ry,ry,r;) then [F| = /ri 47} 472 (a scalar).

The magnitude of a vector is always a positive number. The magnitude
of a vector is a single number, not a triple of numbers, and it is a scalar,
not a vector.
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You may wonder how to find the magnitude of a quantity like —37, which
involves the product of a scalar and a vector. This expression can be factored:

=37 =|-31- 7

The magnitude of a scalar is its absolute value, so:
|=3F| = [=3| - |[F| =3y /s +- 1} 472

9

1.
—=V

Checkpoint 4 If vV = (2,—3,5) m/s, what is 3




Figure 1.20 Are these two vectors equal?
(Checkpoint 5)
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EQUALITY OF VECTORS
A vector is equal to another vector if and only if all the components of
the vectors are equal.
w =7 means that
wy=r and w,=r, and w,=r;
The magnitudes and directions of two equal vectors are the same:
|W|=|F] and w=7
Checkpoint 5 (a) Consider the vectors 7 and 7, represented by arrows

in Figure 1.20. Are these two vectors equal? (b) If @ = (400,200, —100) m/s?,
and ¢ = @, what is the unit vector ¢ in the direction of ¢?

Vector Addition and Subtraction

Vectors may be added, and one vector may be subtracted from another vector.
However, a scalar cannot be added to or subtracted from a vector.

ADDING AND SUBTRACTING VECTORS

The sum or difference of two vectors is another vector, obtained by
adding or subtracting the components of the vectors. Given two vectors

A= (Ay,A,,A,) and B = (By,By,B;), then
A+B=((Ac+By).(A)+B,).(A: +B.))

(1,2,3) 4 (—4,5,6) = (—3,7,9)
A—B={((Ax—Bx),(A,—B)),(A; — B,))
(1,2,3) — (—4,5,6) = (5,-3,-3)
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IfC=A+ E, then C— B = A and so on, just as in scalar addition and

Y subtraction. Note also that A — B = A + (—B), which is sometimes useful in the
éf context of graphical subtraction (see below).
QUESTION Is adding the magnitudes of two vectors equivalent to
/ adding two vectors, then taking the magnitude?
A
No. The magnitude of a vector is not in general equal to the sum of
. the magnitudes of the two original vectors! For example, the magnitude
y of the vector (3,0,0) is 3, and the magnitude of the vector (—2,0,0) is 2, but
the magnitude of the vector ((3,0,0) 4+ (—2,0,0)) is 1, not 5!
B — —
Checkpoint 6 If F;=(300,0,—200) and F, = (150,—300,0), calculate the
i following quantities and make the requested comparisons: (a) F1 + F2
®) |Fy + F5| © |Fi| + B @ Is |F + 5| = |F| + | () FL - F
x () |Fi — Fy| (@) |Fi| - |F2| () Is |Fy — Fy| = |Fy| — |Ey|?
y
- The sum of two vectors has a geometric interpretation. In Figure 1.21 you first
B L walk along displacement vector A, followed by walking along displacement
- A+B = 7 : . S
B vector B. What is your net displacement vector C=A+ B? The x component Cy
AT of your net displacement is the sum of A, and By. Similarly, the y component
Y 3 C, of your net displacement is the sum of A, and B,.
[R— R GRAPHICAL ADDITION OF VECTORS

Figure 1.21 The procedure for adding two To add two vectors A and B graphically (Figure 1.21):

vectors graphically: To add A+B = Draw the first vector A.
graphically, move B so the tail of B is at the = Move the second vector B (without rotating it) so its tail is located
tip of A, then draw a new arrow starting at at the tip of the first vector.
the tail of A and ending at the tip of B. = Draw a new vector from the tail of vector A to the tip of vector B.
i GRAPHICAL SUBTRACTION OF VECTORS
. To subtract one vector B from another vector A graphically (Figure 1.22):
B = Draw the first vector A.
= Move the second vector B (without rotating it) so its tail is located
Figure 1.22 The procedure for subtracting at the tail of the first vector.
vectors graphically: Draw vectors tail to = Draw a new vector from the tip of vector B to the tip of vector A.

tail; draw a new vector from the tip of the
second vector to the tip of the first vector.

Note that you can check this algebralcally and graphlcally As shown in
Flgure 1.22, since the tail of A — B is located at the tip of B, then the vector

4_“2 A should be the sum of B and A — B, as indeed it is:
*
a ap +ay §+(A—B)=
a5 aj Graphical addition and subtraction of collinear vectors would be messy and
< > difficult to interpret if we actually drew the arrows on top of each other. To
e make diagrams easier to interpret, we typically offset arrows slightly so we can
ar —ay

see the results (Figure 1.23).

Figure 1.23 To add (top diagram) and
subtract (bottom diagram) collinear
vectors graphically, we offset the arrows
slightly for clarity.

Checkpoint 7 Which of the following statements about the three vectors
in Figure 1.24 are correct?
@)5=7—F b)F={—5 () F+f=5 (d)S+i=7 () F+5="7
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Figure 1.24 Checkpoint 7.
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Figure 1.25 Relative position vector.
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Commutativity and Associativity
Vector addition is commutative:
A+B=B+A
Vector subtraction is not commutative:
A-B+B-A
The associative property holds for vector addition and subtraction:

(A+B)—C=A+(B-C)

Applications of Vector Subtraction

Since we are interested in changes caused by interactions, we will frequently
need to calculate the change in a vector quantity. For example, we may want
to know the change in a moving object’s position or the change in its velocity
during some time interval. Finding such changes requires vector subtraction.

The Greek letter A (capital delta suggesting “D for Difference”) is
traditionally used to denote the change in a quantity (either a scalar or a
vector). We use the subscript i to denote an initial value of a quantity, and the
subscript f to denote the final value of a quantity.

A (DELTA) IS THE SYMBOL FOR A CHANGE

The symbol A (delta) means “final minus initial.” If a vector F
denotes the initial position of an object relative to the origin (its position
at the beginning of a time interval), and 7 denotes the final position of the
object, then

AF=Fy-7,

A¥ means “change of ¥ or 7y — ; (displacement).
At means “change of ¢” or #y—¢; (time interval).

Since subtraction is not commutative, the order of the quantities matters: the
symbol A (delta) always means “final minus initial,” not “initial minus final.”
For example, when a child’s height changes from 1.1 m to 1.2 m, the change is
Ay = +0.1m, a positive number. If your bank account dropped from $150 to
$130, what was the change in your balance? A (bank account) = —20 dollars.

Another important application of vector subtraction is the calculation
of relative position vectors, vectors that represent the position of one
object relative to another object.

RELATIVE POSITION VECTOR

If object 1 is at location 7; and object 2 is at location 7, (Figure 1.25), the
position of 2 relative to 1 is:

T2 relativetol =12 — 11

Checkpoint 8 At 10:00 AM you are at location (—3,2,5) m. By 10:02 AM
you have walked to location (6,4,25) m. (a) What is A7, the change in
your position? (b) What is At, the time interval during which your position
changed?





